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Abstract

During the last few decades engineers have been designing wind turbines of increasing
size seeking lower values of cost of energy (CoE). A great amount of research has
been done recently seeking alleviation of aerodynamic loads on the rotor and support
structure and thus reducing material costs and CoE. At the same time, Finite Element
Method (FEM) tools have been introduced more and more as part of the design process
for structures, drive system and mechanisms of these machines. Coupling FE models
with in-house modelling tools is a powerful means to enhance designs despite risking
computation trouble. The present work explains a computation method to couple a
comprehensive rotor aerodynamic model, including inflow and loads unsteadiness and
dynamic stall, to a finite element based Multibody model of a wind turbine. All these
unsteady aerodynamic phenomena behave ultimately as a set of interacting dynamic
systems and are included in a proprietary in-house model of rotor aerodynamics. The
methodology presented here is based on an exact closed form solution of an Ordinary
Differential Equation (ODE) system with a linear-with-time source term and it aims
to provide a robust and systematic way to couple in-house models in discretized time
integration schemes. The presented method minimises computation trouble avoiding
nested iterative procedures while getting exact results and therefore resulting in limited
CPU-time and unharmed numerical behaviour. The method is validated in simple
ODE cases and is finally used to build an holistic 110m diameter wind turbine model
with a view to compute loads.

1 Introduction

As modern industry seeks greater challenges while keeping costs low and weight
light, complex simulations are more often included in their design methods.
For bigger devices, simulation models comprise deformable parts of non-linear
materials, complex topology of structures and joints, controlled actuators and
loads of different nature. Examples of that are satellites, robots, civil structures,
helicopters and wind turbines.

Wind energy is a good example of industry sector that has grown fast during
the last three decades. After the oil crisis in the seventies, some research pro-
grammes of diverse origin and outcome were started in Europe and the US. The
sector started its industrialisation in the late seventies and eighties and soon
scaled the initial 50 kW, φ15m rotors to 600kW, φ50m in the nineties, 3MW,
φ100m in the 2000s and currently reaching 6MW, φ125m. On its way, some
technology breakthroughs broke into, i.e. variable speed generators, pitch regu-
lation, direct drive turbines, offshore foundations and, more recently, individual
pitch control. At the present, an effort is being put in floating wind turbines,
advanced controls and smart rotors.

Technology advances have been pushed by the growth of the market and
vice-versa. In that sense, even though Europe’s figures in innovation, sales and
installed power are still in the top, US and Asia are very close in installed
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power; China in particular has four manufacturers among the top ten. Globally
speaking, the installed power quickly increased from the 10GW during the
nineties to 100GW during the 2000s and 283GW at end of 2012. Wind energy
has in that way settled as a mainstream power generation technology worldwide.
Thus, wind power share of the total electricity consumption in 2012 was 7.0%.
(231TWh) in Europe, 3.5% (140TWh) in the US, and 2% (100TWh) in China
[3, 13].

The latter scaling figures have had their mirror in the technology: whereas in
the eighties and nineties wind industry had around 100 granted patents per year,
some hundreds per year were issued during the 2000s and around 1500 yearly
during the last few years. Most of them on Horizontal Axis Wind Turbines
(HAWT).

This continuous growth is due to a big innovation effort which could not be
fully explained without the assimilation of new technologies as well as modelling
and computation techniques from other sectors.

Assessing durability is a key link in the design process of wind turbines,
fatigue becoming a design driver for many of their components. The computa-
tion of loads in big, light elastic structures require the use of non-linear finite
element tools, and modelling mechanisms must be approached with multibody
tools that allow great rotations and account for all the phenomena involved in
them. Practical solutions of such problem are given by time-domain simulation
codes. Historically, the Wind Energy community have been using Multibody
System (MBS) tools; since 2005, however, it has gradually assimilated FEM
methods for components [26] and in 2012 the standards openly consider the use
of FE based Flexible Multibody tools [27]; both methods often using implicit
time integration schemes like the Newmark method [43].

In other sectors, in order to customise models to meet the industry needs,
in-house models are sometimes used together with time integration tools to
model complex problems using some kind of tight or loose coupling strategy. To
guarantee a correct solution of the whole problem, a coupling method should
seek the dynamic equilibrium of whole by transferring information among its
parts at some level. When coupling the dynamic system with in-house models,
attention should be paid in maintaining standards of numerical steadiness and
computation time; even precision can be compromised in case of numerical
trouble.

Frequently, in-house models are formulated as or include dynamic systems,
ordinary differential equation or state-space systems. Similar problems are
solved, according to the literature, using a numerical approximation to the
Duhamel Integral [23, 24] or, when possible, appending the ODEs to the struc-
tural equations [9] or solving nested ODE systems using iterative algorithms.
However, keeping computational time low, finding the exact solution or skipping
possible unsteadiness are sometimes desirable.

In the present work a formulation of an exact closed form solution for this
type of systems when used within a time integration scheme is proposed. The
said formulation is used in the computation of two important phenomena in-
volved in the unsteady aerodynamic loads of a rotor, namely, a dynamic system
representing inflow velocities approaching the rotor and state-space systems
representing the unsteady loads at aerofoil level at several blades stations (see
figure 1).

The rest of the paper is organised as follows. Section 2 explains the state of
the art of aerodynamic modelling of both aerofoil unsteady loading and rotor
inflow in FE based time integration schemes and coupling simulation methods
in three different subsections. Aim of the present work is described in Section 3.
Section 4 explains the progress beyond the state of the art where the mathemat-
ical procedure to reach the closed-form solution is described and a verification
with a simple case is given. Section 5 shows the application of this methodology
to the computation of unsteady aerodynamic loads on an aerofoil and to the
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Figure 1: In-house loads
code coupled with FEM
based Flexible Multibody
system

unsteady rotor inflow. Finally, conclusions are given in Section 6.

2 State of the Art

The present work stands on three legs, the states of the art of which are de-
tailed bellow in three subsections. The first subsection is dedicated to time
integration methods used in Multibody Systems. The second subsection ex-
plains numerical models of unsteady aerodynamics; two methods used to solve
the Beddoes-Leishman unsteady aerodynamic loads are discussed. The third
subsection reviews coupled simulation technologies used both to incorporate
equations of a secondary model to an existing model in tight coupling simula-
tion and to use two or more independent solvers in a co-simulation scheme.

2.1 Time Integration of FEM Based Flexible Multibody Problems

Holistic wind turbine simulations have been historically tackled by means of
Multibody systems with rigid bodies or linear flexibility based on modal reduc-
tion techniques [6, 31, 40, 18]. More recently, catching-up with the rotorcraft
industry state of the art [4, 15], and together with recommendations from the
certification institutions [27], FEM based flexible multibody codes have ap-
peared [22, 14]. Most of these comprehensive tools use implicit solvers with
one-step recursive time integrators of the Newmark family or equivalent and a
Newton-Raphson algorithm to reach convergence at equilibrium [43].

The flexible multibody problem is expressed as a Differential-Algebraic sys-
tem of Equations (DAE):







M q̈ + JTλ = g(q, q̇, t)

Φ(q, t) = 0
(1)

The first set of equations represents the dynamic equilibrium of all the bod-
ies including external, internal and inertia forces, as well as constraint forces;
the second set of equations represents the kinematic constraints Φ imposed by
the joints; M is the mass matrix, q is the coordinates vector, g is the force
summation vector, J is the Jacobian of constraints and λ is the set of Lagrange
multipliers that express a measure of the internal forces needed to satisfy the
corresponding set of constraints.

A Flexible Multibody problem is expressed in two sets of equations. A set
of differential equations of a Flexible Multibody system represents the dynamic
equilibrium of the masses and inertial and internal forces and an algebraic set
of equations represents the kinematic constraints Φ imposed by the joints. The
whole set of equations is solved to find dynamic equilibrium at every new time-
step [12]. Firstly, a new initial prediction is proposed by the Newmark formulae;
secondly, residues of coordinates and constraints are minimised with user pre-
scribed accuracy through an iterative Newton-Raphson algorithm (see figure 2).

The Newmark implicit methods are one-step time integrators that, first pre-
dict new displacements, velocities and accelerations using data from previous
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Figure 2: Newmark
time integration scheme
including Lagrange mul-
tipliers λ and in-house
unsteady aerodynamic
model with Inflow and
aerofoil loads. Based on
a scheme by Gradin and
Cardona [12] and adapted
by the authors.
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time-step and, second, compute internal forces of all the elements present in
the system. Residues vector is computed out of internal forces and a decision
is taken on whether to iterate or not. The unsteady aerodynamic model is
included as an element, therefore using previous time-step displacements (and
derivatives) as inputs and passing aerodynamic loads as outputs in the form of
internal loads.

2.2 Current Methods to Solve Unsteady Aerodynamic Models

A set of very established dynamic inflow models have their origin and are widely
used in the modelling of helicopter flight [10]. Some of these models consider the
incoming wind as a parametrised non-uniform field that responds dynamically
to changes in the rotor [33], thus making them suitable for wind turbine mod-
elling including yawed configurations. The said models are often formulated as
dynamic systems and their state derivatives are provided in the literature for
implementation in solvers.

The reduced-order unsteady loads model considered in this work have their
roots in the frequency domain studies from Theodorsen on unsteady attached
flow aerodynamics [39] and the Beddoes model of dynamic stall [5]. Other
dynamic stall methods, like the ONERA model [29], that uses parameters de-
termined from experimental measurements on oscillating aerofoils, or the Snel
model [37], that includes higher frequency dynamics of a self-excited nature,
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have totally different origins and do not constitute prior art for the present
work.

The Beddoes-Leishman semi-empiric methods for computation of unsteady
aerodynamic loads reformulate the frequency domain Theodorsen theory into
the time domain and propose a time integration of the Wagner function (figure 3)
either by the Duhamel Integral or in terms of a state-space model [24, 25, 9].
The Duhamel integral helps coupling the model to time integrators and state-
space representations are used for stability analysis and can be coupled to a
comprehensive model by co-simulation or by adding the model equations to the
holistic system.

2.2.1 Numerical Approximation to the Duhamel Integral

In the present, dynamic systems with arbitrary load histories are frequently
solved, after several simplifying assumptions, by means of a recursive formula-
tion of the Duhamel Integral. Based on the assumptions made, different final
formulae are found and different accuracy figures are reached. The recursive
nature of this method make it very useful for time integration of models with
an arbitrary input and therefore they can be easily coupled to time integrators,
given some minimal data exchange capabilities.

The indicial response of the aerodynamic coefficients to a step change in
angle of attack was experimentally studied by Wagner in 1925 and obtained an
exact formulation to the so called Wagner function (figure 3). A handy approxi-
mation to this curve was given by Jones in 1938 [16] in terms of a summation of
exponential functions using the non-dimensional reduced time, τ = 2V t/c which
measures time as the number of semi-chords travelled at the airflow speed

φ(τ) = 1−A1e
−b1τ −A2e

−b2τ (2)

After neglecting short-term transient contributions, the following algorithm
is obtained to find the time-varying value of the lift coefficient

Cl(τ) = ClααE(τ) (3)
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considering two deficiency functions for the equivalent angle of attack

αE(τ) = α(τ) −X1(τ)−X2(τ) (4a)

Xi(τ) = Xi(τ −∆τ)e−bi∆τ + Ii (4b)

Ii = Aie
−biτ

∫ τ

0

dα

dτ
(σ)ebiσdσ (4c)

At this point, several algorithms exist based on the nature of the assumptions
taken and yielding different accuracy figures. A first algorithm is based on a
simple backward-difference approximation introduced for dα/dτ ≈ ∆ατ/∆τ and
time steps are taken small enough so that bi∆τ are small. Then the deficiencies
of angle of attack can be evaluated as

Xi(τ) = Xi(τ −∆τ)e−bi∆τ +Ai∆ατ (5)

A second more accurate algorithm is reached assuming ebiσ ≈ ebi(τ+∆τ/2),
and based on the mid-point rule, so that

Xi(τ) = Xi(τ −∆τ)e−bi∆τ +Ai∆ατe
−bi∆τ/2 (6)

Similar procedures exist to integrate aerodynamic loads that derive from the
Kssner function (figure 3) in which the change of angle of attack is progressive
either due to its geometrical nature or due to compressibility effects.

2.2.2 State-space Models

In further works [25] Leishman and Nguyen obtain state-space representations
based on the Wagner function approximation in terms of exponential summands.
These formulations have many advantages over the original one; many dynamic
models and control algorithms are represented in terms of ODE systems or state-
space models and therefore they can be easily coupled together and they can be
solved using well known iterative algorithms with user prescribed accuracy.

The time response to an arbitrary input history of a dynamic system can be
formulated as the superposition of impulse responses h(t) in the same fashion
that it can be formulated as the superposition of indicial responses φ(t). Fur-
thermore, it can be mathematically proven that the unit impulse response is the
derivative of the unit step response.

h(t) =
d

dt
φ(t) (7)

The Laplace transform of the impulse response is normally called transfer
function of the systemH(s), in s-domain. H(s) is a mathematical representation
of the quotient between the input u(t) and output y(t) of a linear time-invariant
system

H(s) =
Y (s)

U(s)
(8)

which can be represented with a state-space system (see appendix A) as in the
following case with multiple input and multiple output variables

~̇x(t) = A~x(t) +B~u(t)

~y(t) = C~x(t) +D~u(t)







(9)
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the equivalent multi-dimensional transfer function being (appendix A)

H(s) = C(sI −A)−1
B +D (10)

A state-space representation in diagonal form is obtained which contains
exactly the same information as equation 3





ẋ1

ẋ2



 =





−fsb1 0

0 −fsb2









x1

x2



+





1

1



α(t)

Cl(t) = Clαfs

[

A1b1 A2b2

]





x1

x2



+
Clα

2
α(t)

(11)

where fs =
2V
c is the flow rate in terms of number of semi-chords per second.

2.3 Coupled Simulation Methodologies

As simulation requirements and systems’ complexity have grown during the past
few decades, preexisting specialised simulation tools have integrated new multi-
physics capabilities or have developed new environments to ease co-simulation
schemes. Multipurpose commercial FE tools as ANSYS, SAMCEF, COMSOL
or ABAQUS have enriched their packages with multiphysics libraries, solvers
and applications.

Besides, researchers have struggled between tight coupled models seeking
higher accuracy and lower CPU times, and loosely coupled models taking ad-
vantage of modularity and specialised solvers. Two scientific fields stand out
in number of publications reporting multiphysics issues and strategies, namely
Multibody Systems coupled to other physically coupled phenomena and con-
tinuum multiphysics simulations involving large mesh discretisations, such as
CFD-CSD modelled fluid-structure interactions.

Published work in many different disciplines, however, still distinguish be-
tween two preferred approaches for mixed-domain problems: integrating sec-
ondary models into the main model in a tight coupling and solve the whole
system at once or creating an ad-hoc interface and use the two or more models
with their own solvers in a loose coupling co-simulation scheme [41, 1, 21, 36].

In a tight coupling scheme the whole system is solved in one process and the
subsystems share unconverged displacements and forces. The process contin-
ues until equilibrium is reached by forces and displacements of all subsystems
at once. In a loose coupling each subsystem is recalculated using subsystems
converged outputs and reaching equilibrium by an iterative procedure of recal-
culations [11].

Tight coupling solutions are preferable when computation time and accuracy
are required. However, tight coupling simulations are not always possible either
because the tight interaction between modules is not known or because the
main model simulation system is not open enough for the analyst to access and
complement the system of equations. On the other hand the loosely coupling
approach results in highly modular, is compatible with black box specialised
solvers, provided minimum input-output capabilities.

As a trend, loose coupling co-simulation is increasingly chosen by analysts
to tackle mixed-domain computation problems thanks to the increasing of com-
putation speeds and to take advantage of specialised software packages. In this
context, commercial software tools have added platforms for co-simulation in-
cluded in their packages and an industrial-academic effort was done recently
to standardise a co-simulation environment. The Functional Mock-up Interface
(FMI) [11] developed under the ITEA 2 European Project is a recent effort
to create a standard to ease co-simulation of models defined in several different
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tools or platforms. The state of the art of co-simulation pointing in the direction
of better communication among master and slave simulators, master algorithms
and step management.

Academic teams and collaborative research programmes, however, are more
up to the challenge of tight coupling schemes that involve more complex al-
gorithms. A recent review by Keyes [19] reports the main present issues and
future challenges of multiphysics simulations in a varied set of research fields
like fluid-structure interaction, heat transfer with neutron transport in nuclear
reactors and Multiscale methods, among others. State of the art of tight cou-
pling is related to solver strategies including variations of the Newton method
[19, 20].

3 Aim of Present Work

The aim of the present work is to provide a robust method to couple a dynamic
system to an existing numerical model equipped with a time integration scheme.
A particular objective of this paper is to apply this method to couple an in-house
unsteady aerodynamic model with a Flexible Multibody model of rotor while
maintaining convergence and CPU time standards as well as getting the most
accurate results possible.

A closed-form expression for the exact solution of an ODE system coupled
in a time integration scheme is presented and it is applied to solve the model
of unsteady inflow velocities model, based on an ODE system, and to solve
the 2D unsteady aerodynamic loads at aerofoil level, based on a state-space
representation, both coupled to a Flexible Multibody rotor model.

The formula is also useful for any other phenomena that can be modelled by
means of a dynamic system and it is to be solved coupled to a time integration
scheme that provides for every time step the set of old forces and deformations
and the set of predicted deformations for the present time step. Furthermore,
the presented method is aimed to provide a robust and systematic way to couple
an in-house model to an existing commercial code without compromising the
stability of the holistic model and contributing to keep CPU time low.

4 Progress Beyond the State of the Art

As shown in section 2.1, many simulation techniques exist to help the analyst
obtain time history of displacements, velocities and loads of complex numerical
models. However, significant trouble may arise when these techniques are used
incautiously and a number of linked methods must work properly to obtain
reliable final results. For the present case, those links include the nature of both
the multibody solver and the in-house unsteady aerodynamic model and the
means to couple them.

The Duhamel integral approximation discussed in section 2.2.1 is a widely
used approach to the problem but a simple recursive formulation is not always
available or it requires a previous significant effort to formulate the assumptions
that make the problem computationally affordable. On the other hand, the set
of assumptions entails an approximation error that is more significant at bigger
time step values and may lead to significant errors for long simulation load cases
(table 1).

A harsh solution is always possible (see section 2.3) given enough computing
force by coupling the two models in a co-simulation scheme. However, the
converged partial results shared at the end of each iteration my not always be
compatible with a solution of another part of the model. Nonetheless, it is
indicated in the literature that attention should be paid to the mathematical
aspects of performance and stability problems of co-simulation with different
dynamic models [42]. Furthermore, coupling of simulators may result in an
unstable integration, if an algebraic loop exists between the subsystems [21]. A
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particular case of numerical instability may appear when at a certain operation
point, the solution jumps between two configurations of the system at every
Newton-Raphson iteration. The error at one side of the coupled system may be
amplified by the dynamics of the other side and therefore leading to convergence
trouble. This problem is magnified when conditional constructs are present.
The unsteady loads model used in this work is an in-house Beddoes-Leishman-
like model that aims to capture aerofoil performance. This is not limited to
attached flow but also includes stalled conditions and, therefore, the set of flow
separation, vortex shed over the aerofoil and other triggered phenomena are
modelled using conditional constructs in the code.

In the case of an in-house model coupled to an existing time integrator as
the one presented in this work, a numerically optimal solution is to append the
in-house model equations to the existing ones taking advantage of the solver
robustness in a fully coupled scheme but this is normally not the best option in
commercial tools.

4.1 Proposed Solution to Couple Dynamic Systems

The method explained in this section is meant for dynamic systems that are
solved in a time-discretised environment. Even if this is the most common
representation it is interesting to show that the method can be also applicable
to any model based on the principle of superposition of indicial responses by
means of the Duhamel integral. By a previous exponential approximation of
the indicial function the method can be formulated as a totally equivalent state-
space representation without losing information.

Each scalar transfer function of the system, in s-domain, can be directly de-
rived from the associated indicial response by using the Laplace transformation
rules:

Hi,j(s) = sL{φi,j(t)} − φi,j(0) (12)

Since any state-space formulation has a transfer function associated,

→ H(s) = C(sI −A)−1
B +D (13)

where A is the dynamic matrix of the state-space, B the control matrix, C the
observables matrix and D the feed-forward matrix. At least one representation
of the state-space can be easily found by simple manipulation of H(s) and term
identification

~̇x(t) = A~x(t) +B~u(t)

~y(t) = C~x(t) +D~u(t)







(14)

Finally, given A is diagonalisable, a similarity transformation is applied to
the original state-space representation so that the new representation has a
diagonal A matrix [30]. This means that the new states form a decoupled set
and the dynamic equation can be treated as a set of simple ODEs.

~z = P~x (15)

Ax = P−1AzP , Bx = P−1Bz

Cx = CzP , Dx = Dz
(16)

The state-space solution ~y(t) is of course invariant under this transformation
and it is a direct contributor of the unsteady aerodynamic force. The result of
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Figure 4: Mathematical
procedure to transform an
indicial response into the
ERCF formula as an alter-
native to the Duhamel In-
tegral approximation
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the said formulation is a de facto linearised representation of the non-linear dy-
namic model that can be directly incorporated to a FE model and be processed
using a linearised input function so that the whole system is solved simulta-
neously by the FE Newton-Raphson strategy. Since the non-linear dynamic
system formulation is not restricted to any field, the presented method could
be regarded, using the terminology by Keyes [19], as a solver method for mul-
tiphysics coupling that avoids nested iterations and takes advantage of the FE
package solver.

4.1.1 Solution of an ODE for an Arbitrary Time History

The fact that the computation is coupled to a Flexible Multibody environment
results in the inputs of the state-space model (chosen among system coordinates
and their derivatives) being determined forehand, i.e. coordinates (and their
derivatives) are known for tn and tn+1.

Figure 5 shows known and unknown data in the time integration algorithm.
Black solid line represents the actual trajectory of the system coordinates. It is
known both for tn and tn+1 and are inputs to the Exact Recursive Closed-Form
expression (ERCF) formula for uncoupled linearised-input equations. Black
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Figure 5: Scheme of
known (circular marker)
and unknown (cross
marker) data in the time
integration algorithm.
Red cross represents the
output forces computed
at t

n+1 using the ERCF
formula

dashed line describes the hypothetical linear trajectory of the system coordinates
between tn and tn+1. Red solid line describes the history of forces up to tn,
which is the output of the method. The red cross is the forces to be computed
at tn+1 using the exact solution of the system when following the hypothetical
trajectory described by the black dashed line.

Therefore, for a small time step value h, a simple evolution of coordinate
vector in the time step range can be hypothesised, e.g. a linear time variation.
Under this assumption an analytical recursive solution can be found for each
decoupled state and expressed as function of state-space input values, state old
values and time step. For each decoupled ODE,

ẋ− ax = bu(t) (17)

trajectory of the system coordinates is assumed to be linear with time and it,
therefore, can be built using known data from previous and actual time step,

u(t) = un +m(t− tn) (18)

with a constant rate of change

m =
un+1 − un

tn+1 − tn
(19)

and the time dependency of a state is obtained from the solution of an ODE
with a simple enough known source term

x(t) = eat

(

∫ t

0

e−asb
(

un +m(s− tn)
)

ds+ C

)

(20)

from which the ERCF formula is derived for the ODE when integrated between
tn and tn+1 assuming a linear trajectory of the ODE input variables

xn+1(h) =
−b

a

(

un +m
(

h+
1

a

)

)

+ eah
(

xn +
b

a

(

un +
m

a

)

)

(21)
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Figure 6: Input source
term u(t) with increasing
frequency

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

time [s]

 

 

u(t)

Figure 7: Input source
term frequency schedule
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4.2 Verification of the Method: a Simple Case

The method has been explored with the aim to verify it. It has been used to
solve an example of state-space with a single state.

ẋ(t) = ax(t) + bu(t)

y(t) = cx(t) + du(t)







(22)

with the state-space constants

a = −5, b = 2

c = 1, d = −8
(23)

and initial conditions

x(0) = 0 (24)

to which an oscillating signal with increasing frequency is applied as input (see
figures 6 and 7).

The system has been solved using the Matlab internal tool lsim and with
the presented method, both with a time step of 0.01 s and plotted in figure 8.

4.3 Numerical Error

Error obtained at time step scale for the loads computation using the present
method remains at the machine error level. Figure 9 shows the error dependency
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between Matlab lsim so-
lution and the presented
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spect to input frequency

with frequency for the simple case explained above.

ǫ =
‖xlsim − xERCF ‖

‖xlsim‖
(25)

5 Results

In rotor aerodynamics two important sources of unsteadiness exist, namely aero-
dynamic loads under arbitrary changes of apparent wind characteristics and
incoming wind speed caused by arbitrary changes in the rotor loading. The
first accounts for relatively fast, aerofoil scale, 2D phenomena including air cir-
culation and dynamic stall; the second accounts for relatively slow air stream
deceleration and deflection at rotor scale.

As said in section 3, one objective of the present work is to couple the
said aerodynamic model with a Flexible Multibody tool. The resulting mixed-
domain code will be used to capture aeroelastic phenomena and compute result-
ing loads. Many commercial aeroelastic codes combine multibody and FEM in
one or another way [34, 17], including the open-source code MBDyn [28]. In the
present work a full FEM flexible multibody code is chosen so that non-linear
elasticity, kinematics and dynamics are well represented. The commercial code
SAMCEF-MECANO was chosen for being a well validated code featuring high
degree of openness to build custom models at several different levels. A com-
prehensive aeroelastic model of a wind turbine rotor was created comprising
structural parts modelled as beams or more complex structures as Superele-
ments [8]. Mechanical joints like bearings and drives are modelled as a series of
lumped mechanism elements, such as hinges, springs and other one-dimensional
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elements for specific functions as silent-blocks and local forces. The tool is
chosen for its openness in the selection of elements, its connectivity and the
possibility to add totally customised user elements or subsystems. Such a fea-
ture requires a totally merged communication with the solver and, at the same
time, the access for the analyst to partial results during the iteration process
including unconverged coordinates and rotations, storage vectors, computation
time, iteration number and algorithm flags among others.

The SAMCEF-MECANO USER element has been used to couple an aero-
dynamic model with around 700 states for the aerodynamic loads model and
3 states for the dynamic inflow model with a Flexible Multibody model of the
rotor with around 800 DOFs.

5.1 Unsteady Aerodynamic Loads

Originally formulated as an indicial problem and numerically solved as Duhamel
integration of Wagner functions, the Leishman formulation for unsteady aero-
dynamic load is frequently expressed as a state-space model.





ẋ1

ẋ2



 =





0 1

−fs
2b1b2 −fs(b1 + b2)









x1

x2



+





0

1



α(t)

Cl(t) = Clα

[

1
2fs

2b1b2 fs(A1b1 +A2b2)
]





x1

x2



+
Clα

2
α(t)

(26)

where fs =
2V
c is the flow rate in terms of number of semi-chords per second.

In this case a two-exponential summands function is used for the Jones
approximation to the Wagner function

φC
α (t,M) = 1−

N
∑

i=1

Ai e
−fsbiβ

2t (27)

A similarity transformation leads to a diagonal representation of the state-
space model with two uncoupled states





ẋ1

ẋ2



 =





−fsb1 0

0 −fsb2









x1

x2



+





1

1



α(t)

Cl(t) = Clαfs

[

A1b1 A2b2

]





x1

x2



+
Clα

2
α(t)

(28)

Now, an exact solution can be found for each state assuming a linear time-
variation of the source term α(t). Since this model is coupled to a FEM en-
vironment the source term of the loads model are known values of coordinates
and their derivatives at tn and tn+1, as it is plot in figure 5. Therefore,

xn+1
1 =

1

fsb1

(

αn +m1

(

h−
1

fsb1

)

)

+ e−fsb1h

(

xn
1 −

1

fsb1

(

αn −
m1

fsb1

)

)

(29)

xn+1
2 =

1

fsb2

(

αn +m2

(

h−
1

fsb2

)

)

+ e−fsb2h

(

xn
2 −

1

fsb2

(

αn −
m2

fsb2

)

)

(30)

with source term variation rate being

m1 = m2 =
αn+1 − αn

h
(31)
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Figure 10: Beddoes-
Leishman model results
compared to MEXICO
experiments. Steady CN
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unsteady measurements
are shown in green; ERCF
results are shown in red

In a first phase of this work, the present formulation has been used to solve
the Beddoes-Leishman unsteady dynamic model in stand-alone 2D aerofoil with
the aim to validate it. In this case public data from the MEXICO experiments
were used [32, 38]. Figure 10 shows CN coefficient of a S814C aerofoil under
sinusoidal oscillations of the angle of attack with a reduced frequency k = 0.094
in the deep stall region. Both unsteady measured and computed, as well as
static results are presented.

5.2 Unsteady Inflow Model

Pitt-Peters is a very common algorithm for inflow wind speed field computation
[33]. It computes the wind speed field on the rotor disc as a modification of the
unperturbed wind speed field upstream. It captures wind direction to rotor axis
misalignment as well as the unsteadiness of wind direction changes.

As expressed in [10] the Pitt-Peters inflow model is expressed as a three-
DOFs coupled ODE system, one of them referring to the mean axial inflow and
the other two referring to the two linear contributions along the the mutually
orthogonal coordinates in the non-rotating disk.

M











v̇0

v̇s

v̇c











+L
−1











v0

vs

vc











=











CT

Cl

Cm











(32)

where the so called gain matrix L is

L =











1
2VT

0 15π
64Vm

tan
(

χ
2

)

0 −4
Vm(1+cosχ) 0

15π
64VT

tan
(

χ
2

)

0 −4 cosχ
Vm(1+cosχ)











(33)
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and the apparent mass matrix M for twisted-blade rotors is

M =











128
75π 0 0

0 −16
45π 0

0 0 −16
45π











(34)

When implemented in the finite element environment, this model is solved
as a system of Ordinary Differential Equations

~̇v +A~v = ~b (35)

the ODE system matrix being

A = M
−1

L
−1 (36)

and assuming a linear time-variation of the source term ~b between tn and tn+1

~bn = M−1 ~Cn

~bn+1 = M−1 ~Cn+1
(37)

Then, the values of the dynamic inflow factors can be written as an analyt-
ical, closed form for the next time step

vn+1
0 = F0 +G0h+H0 e

−a1,1h + vn0 e−a1,1h

vn+1
s = Fs +Gsh+Hs e

−a2,2h + vns e−a2,2h

vn+1
c = Fc +Gch+Hc e

−a3,3h + vnc e−a3,3h

(38)

with the constants

F0 =
bn1 −G0

a1,1
; G0 =

bn+1
1 − bn1
a1,1h

; H0 = −F0

Fs =
bn2 −Gs

a2,2
; Gs =

bn+1
2 − bn2
a2,2h

; Hs = −Fs

Fc =
bn3 −Gc

a3,3
; Gc =

bn+1
3 − bn3
a3,3h

; Hc = −Fc

(39)

6 Discussion and Conclusions

6.1 Discussion of the Method

6.1.1 Numerical Errors

As mentioned in paragraph 2.2.1, several different algorithms exist that imple-
ment numerical solutions of the Duhamel Integral applied to the computation of
unsteady aerodynamic loads. Depending on the nature of assumptions taken to
evaluate the integral Ii in equation 4c, different algorithms with different accu-
racy can be derived. A first algorithm is based on a simple backward-difference
approximation introduced for dα/dτ ≈ ∆ατ/∆τ . Thus,

Ii = Ai
∆ατ

∆τ

(

1− e−bi∆τ

bi

)

(40)
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Wagner function Kssner function
Blade root Blade tip Blade root Blade tip

ǫ1 -1.9% -29% -6.3% -110%
ǫ2 0.005% 0.96% 0.05% 9.9%

Table 1: Duhamel Inte-
gral relative errors at two
stages of a 110m diameter
wind turbine blade

and time steps are taken small enough so that bi∆τ are small. Then, it is
assumed that

1− e−bi∆τ

bi
≈ ∆τ (41)

yielding the following recursive formula ready to implement in numerical codes

Xi(τ) = Xi(τ −∆τ)e−bi∆τ +Ai∆ατ (42)

The relative error due to the assumptions made depends on unsteady aero-
dynamic parameters and time step. Practical error values are found in table 1
for unsteady phenomena based on Wagner function and Kssner function when
zero instantaneous response is desired.

ǫ1 = 2−
b1∆τ

1− e−b1∆τ
−

b2∆τ

1− e−b2∆τ
(43)

A secondmore accurate algorithm is reached when assuming ebiσ ≈ ebi(τ+∆τ/2),
and based on the mid-point rule. After some mathematical manipulation, an
alternative recursive formula is obtained

Xi(τ) = Xi(τ −∆τ)e−bi∆τ +Ai∆ατ e
−bi∆τ/2 (44)

with a lower relative error (see table 1)

ǫ2 = 2−
b1∆τe−b1∆τ/2

1− e−b1∆τ
−

b2∆τe−b2∆τ/2

1− e−b2∆τ
(45)

Taking on account that this work is thought to be part of a simulation
tool using a variable time step with an upper limit at hMAX = 0.01 s, the
aerodynamic loads computation error depends on the geometry and the rotor
working conditions. For a 110m diameter wind turbine rotating at around
13 rpm, the error can easily surpass ǫ = 1% in the best case in one single
time step. Computation of 600 s time simulations, as in wind energy industry
standards, suggests the need to lower these error figures.

6.1.2 Computation Time of the Comprehensive Model

Guidelines for certification of wind turbines require the simulation of around
one hundred 600 s time stories with turbulent wind plus around 400 load cases
of 100 s and 200 s simulation times with singular events. Using a 32 bit Windows
system on a Pentium i7 computer, a typical full certification procedure can take
near 300 h of CPU time. The same machine is used to assess the computation
times involved in the solution of the ODE system with both recursive and itera-
tive methods. A version of the explicit Adams PECE solver [35], as distributed
under the GNU LGPL license by Burkardt [7] and featuring user prescribed
accuracy, was implemented and used to solve ODE systems of several sizes. Se-
ries of thousands of linear ODE systems of several dimensions and with random
constants are programmed in Fortran 90 and run in this machine to evaluate
average CPU times. A similar procedure is followed for the ERCF method.
Both the ERCF method presented here and the numerical approximation to
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Table 2: Computation
times of a baseline S4WT
model and additional
CPU time of unsteady
aerodynamic 8-states
ODEs

Load case
CPU time, min Additional CPU time

times, s
Baseline S4WT Adams PECE ERCF
(h = 0.01 s) iterative solver recursive formula

100 s 16.5 +3.0 min +0.9 s
200 s 30.3 +6.0 min +1.8 s
600 s 82.5 +17.9 min +5.5 s

Table 3: CPU times
of Adams PECE solver
and ERCF method solv-
ing ODE systems of sev-
eral sizes

ODES size
CPU time, µs

Adams PECE ERCF Adams PECE/ERCF
Num of states solver formula ratio

1 8.7 0.042 208
2 12.5 0.086 145
3 18.2 0.105 173
8 52.2 0.289 181
15 122.2 0.546 224

the Duhamel integration are recursive methods and contain similar number of
operations and therefore yield similar CPU times .

With an absolute local error tolerance set to 10−5, the computation time
attributed to the 8-states ODE system solution for one iteration grows by a
factor 200 with respect to the recursive methods (table 3), increasing the sum-
up of aerodynamics computation times from the 5 s of the recursive methods
to 17min, which is a very significant contribution to a 82min of the baseline
SAMCEF-MECANO case. Furthermore, the computation times using iterative
solvers grows quadratically with the number of states, whereas it does linearly
with the recursive methods.

In a comprehensive model with 8 states for each unsteady loads system
computed at every blade station, with 30 stations per blade, and a 3 states
inflow model for the rotor, the total computation time due to the solution of
unsteady aerodynamic ODEs in a 600 s time history using a h = 0.01 s time step
which needs an average of 3.5 iterations per step, ranges from 16min to 18min
depending on the amount of independent subsystems present in the case of very
sparse systems.

Solving the same phenomena using a recursive closed-form representation
like the presented method, reduces CPU times to approximately 5.5 s for each
600 s load case (table 4). For a full certification procedure with high accuracy,
the recursive closed-form methods save up to 46 h of computation time. For the
Duhamel integral, frequently used in the literature for such models, the use of
mathematical operations and memory is very similar, therefore it is reckoned to
yield computation savings of the same order.

6.2 Conclusions

A new method for coupling an unsteady aerodynamic model based on dynamic
systems to a finite element based flexible multibody model of wind turbine has
been presented.

Table 4: CPU times
of Adams PECE solver
and ERCF method solv-
ing the set of ODE sys-
tems present in the model
for a 600 s load case. The
percentages of the total
computation time are in-
cluded in parentheses

ODES size
CPU time

Adams PECE ERCF
Num of states solver formula

8
15.6 min 5.5 s

(16%) (0.11%)

15
36.4 min 10.3 s

(31%) (0.21%)
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The method is formulated as an exact closed solution of an ordinary differ-
ential equation with a known linear source term that is compatible with the
unknowns and outputs of a one-step time integrator scheme.

The method is therefore valid to model any other phenomenon that can be
modelled by means of an Ordinary Differential Equation or by an ODE system
with a diagonaliseable dynamic matrix so that it can be decoupled forehand.
Full efficiency is shown when the dynamic system is diagonalised symbolically
beforehand.

The method is applicable to the integration of any stand-alone dynamic
system with an arbitrary source term function, given a decoupled representation
of the ODE system.

Results show very high accuracy, obtaining error figures in the limit of ma-
chine precision when comparing a stand-alone test case solved with the lsim
tool from Matlab.

The method is used to solve an aeroelastic problem coupling an in-house
700 states unsteady aerodynamic model including unsteady inflow and unsteady
loads with a 800 DOFs FEM based flexible multibody model of a wind turbine.
The model showed excellent robustness and CPU times.

When compared to nested iterative algorithms to reach similar accuracy the
exact closed-form method shows to be computationally much faster. CPU time
savings are comparable to those reached with the numerical approximation of
the Duhamel Integral found in the literature.

When compared to the numerical approximation to the Duhamel Integral,
with errors around 5% and 1% depending on the assumptions made and the time
step, the presented method shows the advantage of yielding machine precision
accuracy.
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Appendices

A Transfer Function of a State-Space

A state-space formulation has a transfer function associated:

~̇x(t) = A~x(t) +B~u(t)
~y(t) = C~x(t) +D~u(t)

}

(46)

where A is the dynamic matrix, B the control matrix, C the observables matrix
and D the feed-forward matrix.

Operating in Laplace domain:

s ~X(s) = A ~X(s) +B~U(s)
~Y (s) = C ~X(s) +D~U(s)

}

(47)

→ ~X(s) = (sI −A)−1
B~U(s) (48)

→ ~Y (s) = C(sI −A)−1
B~U(s) +D~U(s) (49)

→ H(s) = C(sI −A)−1
B +D (50)

H(s) is the matrix of transfer functions among every input and every output.
The denominator of the transfer function is the characteristic polynomial

λ(s) = det(sI − A), therefore, matrix A of a factorized denominator can be
written as a diagonalized matrix.

A.1 Diagonal Form of a Leishman Loads Model

The state equations describing the behaviour of the unsteady aerofoil in attached
flow conditions can be obtained by directly application of Laplace transform of
the indicial response.

In this paragraph a simple case of unsteady lift in arbitrary angle of attack
changes is treated without initial conditions (Kssner effect) in diagonal form.

From a transfer function the lift response to an input α(t) can be directly
written in state-space form.

H(s) =
A1b1fs(s+ b2fs) +A2b2fs(s+ b1fs)

(s+ b1fs)(s+ b2fs)
(51)

According to the state-space block diagram

H(s) = C(sI −A)−1
B +D (52)

the following states vector is selected:

~x =

[

1/(s+ fsb1)

1/(s+ fsb2)

]

(53)

For each output variable, matrix C can be derived watching the transfer
function written as a linear combination of states and the input variables. Thus,
matrix C is made of as much rows as outputs are there in the system and each
row is the constants vector of the corresponding output variable.

[

ẋ1

ẋ2

]

=

[

−fsb1 0

0 −fsb2

]

[

x1

x2

]

+

[

1
1

]

α(t)

Cl(t) = Clαfs
[

A1b1 A2b2
]

[

x1

x2

]
(54)
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A.2 Canonical Form of a Leishman Loads Model

In this paragraph a simple case of unsteady lift in arbitrary angle of attack
changes is treated without initial conditions in canonical form.

The transfer function in the paragraph above can also be written as follows
(using A1 +A2 = 1 found above):

H(s) =
fsA1b1(s+ fsb2) + fsA2b2(s+ fsb1)

(s+ fsb1)(s+ fsb2)
(55)

H(s) = fs
2b1b2

1

s2 + fs(b1 + b2)s+ fs
2b1b2

+

+ fs(A1b1 +A2b2)
1

s2 + fs(b1 + b2)s+ fs
2b1b2

(56)

From this second representation of the transfer function an alternative repre-
sentation in the state-space can be formulated: the controllable canonical form.

~x =

[

x1

ẋ1

]

(57)

Using the derivative in the s domain (Laplace), which is simply multiplying
by s, the new states vector can be derived by inspection:

~x(s) =

[

x1(s)

s x1(s)

]

=

[

1/(s2 + fs(b1 + b2)s+ fs
2b1b2)

s/(s2 + fs(b1 + b2)s+ fs
2b1b2)

]

(58)

Therefore, matrix A (i.e. the transfer function) contains the equation that
relates both states x2 = x1 in row 1 and the hidden second order differential
equation of x1 in second row. This second order equation on x1 contains all
the information of the state-space, therefore it will take the form of the transfer
function. Consistently, input variables do not contribute to the first equation.

x2 = ẋ1 → x2(s) = s x1(s) (59a)

ẋ2 = ẍ1 → s x2(s) = s2 x1(s) (59b)

s2x1 = fs(A1b1 +A2b2) sx1 + fs
2b1b2x1 (59c)

therefore, the state-space system is represented as

[

ẋ1

ẋ2

]

=

[

0 1

−fs
2b1b2 −fs(b1 + b2)

]

[

x1

x2

]

+

[

0
1

]

α(t)

Cl(t) = Clα

[

fs
2b1b2 fs(A1b1 +A2b2)

]

[

x1

x2

]
(60)

B One Time-step Formula of a Decoupled State-space Model

From [2] the solution of an ODE with a known excitation function

ẋ+ p(t)x = q(t) (61)

can be evaluated as

x(t) = e−
∫

t

0
p(s) ds

(

∫ t

0

q(s)e
∫

t

0
p(v) dv ds+ C

)

(62)

Given a states equation

~̇x = A~x+B~u (63)
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and its uncoupled representation A′ = a′ii, B
′ = b′ik, the integral above can be

solved for each state i of the new representation using some intentionally chosen
constant b and input function u(t).

p(t) = −a′ii = −a (64)

q(t) =
∑

k

b′ikuk(t) = b u(t) (65)

A linear trajectory of the source term u(t) between tn and tn+1 is chosen for
simplicity, but higher degree curves can be used instead.

u(t) = un +m(t− tn) (66)

with

m =
un+1 − un

tn+1 − tn
(67)

The said source term is used in the sates equation and symbolic integration
is done for x(t)

ẋ− ax = b u(t) (68)

x(t) = eat
(
∫ t

0

e−asb
(

un +m(s− tn)
)

ds+K

)

(69)

x(t) =
−b

a

(

un +m
(

t− tn +
1

a

)

)

+Keat (70)

the value of the states at the beginning of the time-step are known

x(tn) = xn =
−b

a

(

un +
m

a

)

)

+Keatn (71)

=⇒ K = e−atn

(

xn +
b

a

(

un +
m

a

)

)

(72)

finally, the value of the states are found both expressed with respect with time
t and with time-step h.

x(t) =
−b

a

(

un +m
(

t− tn +
1

a

)

)

+ ea(t−tn)

(

xn +
b

a

(

un +
m

a

)

)

(73)

x(h) =
−b

a

(

un +m
(

h+
1

a

)

)

+ eah
(

xn +
b

a

(

un +
m

a

)

)

(74)
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