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Abstract
A generalized analysis is formulated that extends wind sail aerodynamics to a designer
system engineering of solar sails through equivalent astrodynamics, astro-elasticity,
astro-viscoelasticity, morphing and optimization. The analytical formulation is cast
in terms of an inverse calculus of variations problem that leads to solutions yielding
optimum solar sail material properties, sizing and geometries subject to preselected
constraints, such as maximum thrust, high strength, minimum weight, stability and
control, etc. A relatively simple less inclusive illustrative example is also presented.

1. Introduction

To coin a phrase, astro-elasticity and astro-viscoelasticity are the space parallels
to atmospheric aeroelasticity [1 – 19] and aero-viscoelasticity [20 – 41] except
that aerodynamic lift and drag forces are replaced by similar solar wind forces.
In the final analysis, it is the “wind” generated velocity squared - whether atmo-
spheric or solar - that produces the lift and drag surface forces. Consequently
with the exception of gravity forces, a flexible space vehicle sail exposed to so-
lar winds behaves no differently than one exposed to atmospheric conditions,
including temperature exposures.

It is to be noted that sails require no additional weight beside their own to
deliver thrust, albeit a relatively small one compared to say chemically generated
forces. However, solar sails may find use as augmentation thrust sources in
unmanned long term voyages. Additionally, when not in use they may easily be
retracted and stored.

The high demands for and the limited productivity by photo cells of elec-
tric power create a stark contrast in the operational needs of satellites and
planetary probes. It, therefore, becomes imperative to devise alternate control
and/or propulsion means for such vehicles. Similarly, space antenna dishes need
to maintain their shapes in micro-gravity environments which can be realized
through another optimum morphing protocol.

One such approach is the use of solar sails – a multidisciplinary set of prob-
lems combining materials, space structure morphing, magneto-electro-dynamics,
stability and control, thrust, etc. Similarities and differences between aerody-
namic [44] and solar sails need to be explored. However, in order to efficiently
deploy both devices one must be able to morph them [45 – 51] into distinct
optimal shapes. This can be be accomplished through the theoretical analyses
and attendant protocols developed in [52] and further generalized in [53]. Also
see the extensive bibliography in the latter publication.

The developed synthesis/designer approach has numerous advantages:
1. – optimum astrofoil shapes that yield high thrust, i.e. high lift, solar sails
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2. – morphing of camber lines to produced specified motion, attitude control,
(L/D)max, etc.

3. – efficient weight control leading to highly flexible structures, and other
prescribed tasks

4. – high strength to low weight ratio structures
5. – solar sails, space antenna dishes, etc. that can be readily morphed into

desired shapes to satisfy prescribed tasks
The analysis and solution protocol developed in [52] is an inverse calculus of

variation formulation subject to as as many restraints as desired to produce opti-
mum material properties, geometries, stresses, deformations, etc. When applied
to solar sail configurations, the protocol can select among other criteria, such as
the following ratios high thrust

low weight ,
high thrust
small area , high maneuverability

small energy expenditure , etc.

When the vehicle is in a planet’s shadow, the solar sail will experience low
temperatures and behave elastically. On the opposite planetary side in full
exposure of the Sun’s rays the sail may then respond viscoelastically depending
on its material composition.

In the final analysis, one must consider any sail producing lift and drag to
behave like an ordinary flight vehicle wing, albeit with lesser rigidity than a typ-
ical flight vehicle one. More often than not, a sail is a thin limiting case warped
plate represented by a camber line generated from an actual airfoil contour. As
such, the astro-sail (astro-wing, solar sail) can be considered a double curva-
ture plate with optimized variable thickness and functionally graded material
properties. The sail’s purpose is to produce lift that translates into propulsive
thrust without generating an overabundance of drag forces.

Then the problem at hand is to synthesize an astro-sail wing driven by so-
lar winds. This optimizing process includes the sail’s shape, with an optimum
astrofoil camber and shape to provide the prescribed thrust in conjunction with
optimum material properties to provide sufficient rigidity and mass to withstand
static and dynamic conditions, such as torsional divergence, control reversal,
flutter, buffeting, etc., in a space environment as well as stability and control
of the space vehicle including structural integrity and demanded performance of
the solar sail and vehicle.

2. ANALYSIS

2.1 Governing relations

2.1.1 Elastic media

Consider a Cartesian coordinate system x = {xi} = {x1, x2, x3} with the Ein-
stein tensor notation in force. The elastic anisotropic constitutive relations then
are

σeij(x, t) = E0
ijkl [εekl(x, t) − αϑ(x, t)] (1)

εeij(x, t) = C0
ijkl [σekl(x, t) + αϑ(x, t)] (2)

where T is the temperature of the solar sail, T0 is the reference temperature at
which the thermal expansions are zero, i.e. αϑ(T )

∣∣∣
T=T0

= 0, and

ϑ(x, t) = T (x, t) − T0 (3)

For isothermal conditions ϑ = 0. The temperature, of course, plays a major role
in the position of a satellite during the sunlight, shadow and transitions of their
orbits.
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2.1.2 Viscoelastic media

When the sail is exposed to sunlight the temperatures of the material will rise.
Since the sail will be made of composite materials one can expect viscoelastic
rather than elastic behavior.

In the viscoelastic case, the constitutive relations are

σij(x, t) = (4)

t∫

−∞

Eijkl [x, t, t,′ T (x, t′)] ∂εkl(x, t
′)

∂t′
dt′

︸ ︷︷ ︸
mechanical strain contributions

−
t∫

−∞

ETij [x, t, t,′ T (x, t′)] ∂ [αϑ(x, t′)]
∂t′

dt′

︸ ︷︷ ︸
thermal expansion contributions

εij(x, t) = (5)
t∫

−∞

Cijkl [x, t, t,′ T (x, t′)] ∂σkl(x, t
′)

∂t′
dt′ +

t∫

−∞

CTij [x, t, t,′ T (x, t′)] ∂ [αϑ(x, t)]
∂t′

dt′

In the advent of constant or time independent temperatures, these relations
reduce to

σij(x, t) =
t∫

−∞

Eijkl [x, t− t,′ T (x)] ∂εkl(x, t
′)

∂t′
dt′ (6)

εij(x, t) =
t∫

−∞

Cijkl [x, t− t,′ T (x)] ∂σkl(x, t
′)

∂t′
dt′ (7)

The various moduli and compliances can be generically represented by sep-
arate Prony series [42], such that at constant temperatures

E(t) = E∞ +
N∑

n=1
En exp

(
− t

τn

)
with E0 = E∞ +

N∑

n=1
En (8)

Substituting into (6) and integrating by parts, yields

σij(x, t) = Eijkl0 εkl(x, t) −
t∫

0

N∑

n=1

3∑

k=1
l=1

Eijkln

τijkln
exp

(
− t− t

′

τijkln

)

︸ ︷︷ ︸
= φ(t−t′)

εkl(x, t′) dt′

(9)
where φijkl(t) are the anisotropic relaxation functions. A similar construction
can be carried out for Eq. (7) with ψijkl(t) the anisotropic creep functions. Both
of these later two functions as well as moduli and compliances can additionally
be nonhomogeneous such as Eijkl(x, t), etc.

2.1.3 Viscoplastic media

The fundamental difference between viscoelasticity and viscoplasticity is that
the second medium exhibits one or more yield points and distinct constitutive
relations in each region. This may occur during cold flights but generally will
not take place under elevated or high temperatures. Since solar sails need to be
folded and stored when not in use one may expect that they could be made of
aluminum foil, cloth, polymer or composite materials. Consequently, one may
expect them to behave regionally elastically or viscoelastically.
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Figure 1: Typical force
and motion vectors for
sail and vehicle [68]

2.1.4 Astro-elastic/-viscoelastic issues

Basically the medium through which the solar sail and vehicle fly defines the
problem at hand with major differences between aero-elasticity/viscoelasticity
and astro-elasticity/viscoelasticity. The usual problems of torsional divergence,
control reversal, flutter, buffeting, etc., fundamentally remain similar, except
that atmospheric air is replaced by solar winds. The relatively low solar wind
density may drive the vehicle velocity into supersonic or hypersonic regimes. In
both media astro-elastic and astro-viscoelastic instabilities are driven by flight
velocities regardless of their origin.

2.1.5 Solar wind astrodynamics and morphing of solar sails

Morphing to control tension at corners and thereby dictate sail shape can
be readily accomplished through piezoelectric actuators with relatively limited
power expenditures and can be employed for attitude and general flight con-
trol. A partial list of pertinent references are for aerodynamics [59 – 71] and for
morphing [44 – 51].

2.1.6 Motion and control relations

Fig. 1 depicts the various force vectors arising from atmospheric lift and drag
[68] that are directly transferable to solar sails by simply replacing atmospheric
flows with solar winds.

2.2 Solar wind forces on sail

The equivalent driver to air velocity is the solar wind which is a plasma stream
of charged particles that produces pressures at 1 AU in the range of 1 to 6 nPa
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(1 to 6E-9 N/m2). The dynamic pressure1 pdyn in nPa is a function of solar
wind velocity Vsw in km/s and equals [54]

pdyn = 1.6726⊗ 10−6 ρsw V
2
sw = 3.3452⊗ 10−6 qsw (10)

where the solar wind density ρsw is 7 protons/cm3. The solar wind speed
varies approximately from 300 to 900 km/s with an average of 400 km/s. [55 –
57], which yields 1.0537 ≤ pdyn ≤ 9.4836 nPa.

The lift can then be obtained from

L(t) =
∮

A

pdyn(x, t)~n(x, t) · ~k(t) dA (11)

where the unit vector ~k is normal to ~Vsw and ~n is the unit vector ⊥ to the
airfoil section surface and pointing into the sail section. This relation can also
be written in a more conventional form as

L(t) = qsw

∫

A

dcl(x2, t)
dα

α(x2, t)
︸ ︷︷ ︸

= cl(x2), the
section lift coefficient

dA (12)

Similarly the drag of the sail can be expressed as

D(t) =
∮

A

pdyn(x, t)~n(x, t) · ~i(t) dA = qsw

∫

A

dcd(x2, t)
dα

α(x2, t)
︸ ︷︷ ︸

= cd(x2,t), the
section drag coefficient

dA (13)

with ~i the vector parallel to the flight velocity ~Vsw. The following short hand
definitions are introduced for the aero/astro-derivatives and for any stability
derivatives as well

cl,α(x2, t) ≡
dcl(x2, t)

dα
and cd,α(x2, t) ≡

dcd(x2, t)
dα

(14)

The pressure pdyn depends on the shape of the solar sail, which in turn
depends on how the sail is presented to the solar wind and what equilibrium
shape it ultimately assumes subject to imposed constraints. This a classical
closed loop astro-elastic or astro-viscoelastic problem where the solution feeds
back through the input (solar wind pressure or lift and drag) to define the
optimum shape and camber of the sail. The identical problem exists under
atmospheric wind conditions for sails and flexible windmill blades.

For a 3–D Cartesian coordinate system x = {x1, x2, x3} Roman letters are
used as subscripts. On the other hand, the 2–D coordinates sγ(x1, x2, t), γ = 1, 2
are coordinates tangent to the sail surfaces in the xγ − x3 coordinate planes.

A thin flexible sail is basically a 2 – D membrane catenary that can sustain
only tensions Tγ(x1, x2, t) with no bending and/or shear capabilities. The solar
sail is attached to the vehicle by 3 or 4 tether lines depending on whether the
sail is triangular or four sided. These are designated by F

(µ)
i (t), where the

superscript µ refers to the particular line force and the subscript i refers to the
Cartesian coordinate direction.

The radii of curvature of the middle surface are

1
Rmsγ (x, t) = ∂2u3(x, t)

∂x2
γ


1 +

(
∂u3(x, t)
∂xγ

)2



(−1/2)

︸ ︷︷ ︸
nonlinear form

≈ ∂2u3(x, t)
∂x2

γ︸ ︷︷ ︸
linearized for(
∂u3(x,t)
∂xγ

)2
� 1

(15)

1nPa = nano Pascals
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with γ = 1, 2

where u3(x, t) ≡ u3(x1, x2, t) is the deflection in the x3-direction of the sail
middle surface. For essentially very thin sails where the thickness h� Rmsγ , one
can assume that the middle surface normal strains are the only ones present in
the system. For larger h’s the resulting additional sail curvatures are prescribed
to be caused by plane cross sections remaining plane, although the resulting
strains become nonlinear functions of the radii of curvature [90]. The linear
form of expression (15) is generally not realizable for flexible sails.

The shape of the sail described by u3 may be specified as a given astrofoil
either by specification or through morphing based on pre-selected constraints
such as for instance (L/D)max.

The angles ϕ(x1, x2, t) between the tangents to the sail surface and the xγ-
axes are defined by

ϕγ = arctan
(
∂u3

∂xγ

)
(16)

The in-plane tensions T (x1, x2, t) are tangent to the surface and essentially
can be considered as follower loads Tγ in the sγ-directions with

Tγ(x1, x2, t) = T cos [ϕγ(x1, x2, t)] (17)

Similarly, the solar wind pressures pdyn(x1, x2, t) , which are normal to the
sail surface (Fig. 2), have components

pγ(x1, x2, t) = pdyn
tanϕγ

(18)

Therefore, the equilibrium conditions are

geometry =⇒ dsγ(x1, x2, t) =
√

(dxγ)2 + (dx3)2
γ = 1, 2 (19)

tensile strain tangent to sail surface =⇒ εγγ(x, t) =
dsγ − ds0γ

ds0γ
(20)

In an isotropic isothermal homogeneous medium the constitutive relations,
the strains on the median surface designed by εmsγγ are

εms11 (x, t) =




C0
1111 T1(x, t) + C0

1122 T2(x, t) elastic

t∫

−∞

[
C1111(t− t′)∂ [T1(x, t′)]

∂t′
+ C1122(t− t′)∂ [T2(x, t′)]

∂t′

]
dt′ viscoelastic

(21)
and

εms22 (x, t) =




C0
1122 T1(x, t) + C0

1111 T2(x, t) elastic

t∫

−∞

[
C1122(t− t′)∂ [T1(x, t′)]

∂t′
+ C1111(t− t′)∂ [T2(x, t′)]

∂t′

]
dt′ viscoelastic

(22)
For quasi steady-state sail conditions, negligible inertia,2 and gravity, the

forces on the sail are the wind pressure pdyn and the in-plane tensions T . These

2i.e. time independent wind velocity, no force build up in time, no sail flapping or flutter,
etc.
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Figure 2: 3–D solar sail
forces with x1 − x3 axes

conditions produce the following geometric and equilibrium relations (Fig. 2)

xγ−direction force equilibrium =⇒
∑

Fγ = 0 =⇒

Lγ [pdyn(x, t), T (x, t), ϕγ(x, t)] = p1(x, t) − Tγ(x, t) = 0 with γ = 1, 2
(23)

with

geometry =⇒ Lγ+2

[
w(x, t), ϕγ(x, t)

]
= ∂u3(x, t)

∂xγ
− tan [ϕγ(x, t)] = 0

with γ = 1, 2 (24)

Introducing a stress function ψ(x, t) defined as [90]

T1 = h
∂2ψ

∂x2
2

and T2 = h
∂2ψ

∂x2
1

(25)

where h is the sail thickness, leads to

L5 = ∂4ψ

∂x4
1

+ ∂4ψ

∂x4
2

+
t∫

−∞

E(t− t′)∂
3u3(x, t′)
∂x2

1 ∂t
′
∂3u3(x, t′)
∂x2

2 ∂t
′ dt′ = 0 (26)

and
L6 = T3(x, t) + h

∂2ψ

∂x2
2

∂2u3

∂x2
1

+ ∂2ψ

∂x2
1

∂2u3

∂x2
2

= 0 (27)

The six unknowns are u3, ϕγ , ψ and Tγ and are defined by Eqs. (23), (24), (26) and
(27). The solution protocol is outlined in Section 2.4.

These coupled governing relations are nonlinear and present scant hope of
being decoupled or allowing a system analytic solution.

If morphing is applied or if the sail is permitted to assume an astrodynamical
optimum camber, then the above aero/astro-derivatives – cl,α and cd,α – and
possibly others, become parameters to be optimized subject to constraints such
as maximum L/D ratios, minimum weight, maximum failure stress, etc.

The entire system of Lj equations is subject to Mc number of imposed
preselected constraints Cm stated by

Cm [max σ,max u3, ω,weight, cost, L/Dmax, · · · ] = 0 m = 1, 2, 3. · · · ,Mc

(28)
These constraints together with the aforementioned Li relations form the system
determining the optimized parameters necessary to meet the desired design
conditions . See Section 2.4 and Fig. 6.
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Figure 3: The worst
case scenarios: isola-
tions from and denials
of pervasive system of
systems concepts [58]
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2.3 System engineering developments

A system engineering (holistic) approach to the synthesis (design) and opti-
mization of entire or major vehicle portions is needed to confront these complex
system engineering problems.

All major system component characteristics need to be considered in the
context of interdependency and their interaction with whole vehicle. Advanced
engineering methodologies are required to adequately characterize the various
components and interfaces of the systems in a multi-disciplined evaluation in a
holistic analysis.

Modeling of many of the system components has led to significant develop-
ments in the disciplines of tailored aerodynamics, aeroelasticity, stability, con-
trol, geometry, materials, structures, propulsion, performance, sizing, weight
and cost, to mention a few. Unfortunately, except perhaps for aeroelasticity
and control problems, they have been considered much too often in isolation
from each other as single system elements rather than as part of an integrated
closed loop system of systems. See the cartoon in Fig. 3 as extreme examples
of possible exaggerated self importance and compartmentalization.

Economic feasibility of the systems is driven by the cost of fabrication, main-
tenance and operations. Multi-disciplined optimization allows for total system
optimization but requires a balance of method fidelity to achieve the appropri-
ately significant results.

Figs. 4 and 5 depict typical flow charts of a system engineering process
showing the various details contributing to system protocols [87].

2.4 Designer system of system analysis – A generalized system en-
gineering case

In [52] through an analytical formulation of inverse problems it was proven
that elastic and viscoelastic material properties and structural sizing can be
designed/tailored to render desired performances according to prior specifica-
tions and constraints. For instance, these protocols can be used to analytically
design/engineer optimum elastic and/or relaxation moduli that guarantee say a
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Figure 5: Schematic of
system engineering pro-
cess

maximum strength to weight ratio, maximum dissipation in a given time range
or a maximum flutter speed or other constraints.

These formulations will now be generalized to designer systems of systems
in a Cartesian space with co-ordinates x = {xi} with i = 1, 2, 3. The Einstein
summation convention applies throughout. The number of systems is P and
each system is identified by the superscript p. The state variables in each system
are upm and the ensemble of all state variables is designated by u as

u = u(x, t) = {upm(x, t)} m = 1, 2, · · · ,Mp and p = 1, 2, · · · ,P
(29)

and each system hasMp number of variables.
The design parameters to be optimized are defined by

S = {Sn} n = 1, 2, · · · ,N and p = 1, 2, · · · ,P (30)

Some of the variables um and parameters Sm will appear in more than one
system since each system and the system of systems are coupled.

Each of the systems has Q number of governing relations

Lpq (x, t,u,S) = 0 p = 1, 2, · · · ,P and q = 1, 2, · · · ,Qp (31)

with constraints

Cp` (x, t,u,S) = 0 ` = 1, 2, · · · , L̂ and p = 1, 2, · · · ,P (32)

This set of relations can now be individualized to each of the groups (i.e. sys-
tem) of Fig. 3 . Their total ensemble then forms the system of systems relations,
which can be expressed as

L(x, t,u,S) =
{
Lpq (x, t,u,S)

}
= 0 (33)

and
C(x, t,u,S) = {Cp` (x, t,u,S)} = 0 (34)
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Eqs. (33) and (34) are the governing relations for the optimized system of
system and their solution for the parameter set S analytically defines its many
details.

A brief outline of the protocol to be followed is shown in Fig. 6 . This inverse
procedure consists of the following:

1. Derive governing relations for the problem, which in generic form are
shown in (31).

2. For each system formulate desired constraints Cp` based on the prescribed
specifications for the entire vehicle. However, in many cases these specifi-
cations may be derived requirements from the overall vehicle specifications
in the system engineering sense.

3. Eliminate the spatial dependence of the state variables by applying Galerkin’s
procedure.

4. Solve the governing relations (31) for the remaining temporal functions

û(S, t) =
b∫

a

u(x, t) upm(x, t) dx p = 1, 2, · · · ,P and q = 1, 2, · · · ,Q

(35)

5. Eliminate the temporal dependence by least square fits or through the
collocation method or by evaluation at prescribed life times

ũ(S) = û(S, tLF ) (36)

or other specified times. Alternately, another specification could involve
a time averaging process, such that

ũ(S) = 1
tLF

tLF∫

0

û(t′) dt′ (37)

6. FormulateM×P simultaneous equations of theM×P unknown param-
eters through the application of Lagrangian multipliers λ` [72 – 73], such
that

∂

∂Spm
{ũ(S) + λ` C

p
n(S)} = 0 m = 1, 2, · · · ,M and p = 1, 2, · · · ,P

(38)
or any other proper expression(s) that one wishes to optimize.

7. After the Lagrangian multipliers λ` [72], [73], are eliminated in (38), one
can solve the simultaneous algebraic transcendental equations for each and
all Spm, thus realizing the optimized system of systems configuration.

8. Fig. 6 graphically summarizes and illustrates the above protocol.

3. An illustrative example

For the sake of simplicity consider a solar sail of fixed rectangular dimensions

with constraints on optimum
(
L

D

)

max

and
(
σfail
Msail

)

max

. The symbol Msail

stands for the mass of the solar sail which is presumed to be a fiber/matrix com-
posite, i.e. a nonhomogeneous anisotropic elastic or viscoelastic linear material.
The question to be answered then is what are the mechanical properties of the
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1 

Galerkin)
eliminates))x)

LSQ,))2me)averaging,))
evalua2on))at))design)
2mes))eliminates))t)

Solve  for  
parameters  Sm 
(algebraic  eqs.) 

Solve for
um(t)

1

�

�Sm
{�un(S) + �n C(S�)} = 0

1

Governing Eqs.
Ln(S, x, t) = 0

1

Constraints
Ln(Sú, x, t) = 0

1

Figure 6: Designer cal-
culus of variations flow
chart [52]

sail to meet the imposed constraints. The sail x1 and x2 dimensions are a and
b and the material is a single ply viscoelastic woven cloth. The temperature is
considered as a constant throughout the sail – an assumption justified by the
sail’s thinness. Such a condition un-complicates the problem considerably, but
far from totally, by removing transient loading conditions and the temperature
dependent multiplicity of the relaxation moduli – see Figs. 8 and 9.

The Liebeck high lift L–1003 airfoil as characterized by its camber line –
see Fig. 10 – was chosen to represent the solar sail [107 – 108]. In a real and
more sophisticated synthesis process the actual camber shape could be system
engineered along with other optimized parameters. The aerodynamic designer
protocols and theory are presented in [59 – 71].

In the absence of any camber line data, the aerodynamic properties of the
camber shaped sail were taken as those of the corresponding airfoil.

Cost has not been included in the present study, but Refs. [110 – 113] for-
mulate and evaluate a number of pertinent cost functions.

4. Discussion

The simple illustrative example of Section 3. with its reduced number of opti-
mized parameters and simplified sail loading compared to the general forces of
Fig. 1 is, nevertheless instructive. The influence of temperature on viscoelastic
materials as seen in Fig. 9, although not considered in this simple example,
profoundly changes the material response time by orders of magnitude. The
rather sparse available experimental data on viscoelastic multi-axial failures is
exemplified by the typical 1-D display in Fig. 11 [95 – 102]. Fig. 12 illustrates
the influence of various loading time conditions on ultimate failure times. Under
constant flight velocities the space vehicle operates under relaxation protocols.

Figs. 13 and 14 present a few results. The first illustrates the importance of
optimizing the variation of material property parameters in two directions by

ASDJournal (2020) Vol. 8, No. 1, pp. 1–22
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Figure 7: Regions of
influence for relaxation
moduli [94]
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Figure 12: Impact of
loading on reaching fail-
ure condition
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Fig. 1 – Delamination Probabilities and Lifetimes of a Composite Plate [3] 

 
 Possible introduction of optimal servo control assistance for panels in 
critical locations to improve optimum material and geometric responses will 
also be considered.  Minimum weight and lowest manufacturing costs are 
prime optimization candidates in aerospace structures, however since at this 
stage one is dealing with optimum hypothetical materials and configurations 
rather than with existing established conditions, their determinations remain 
illusive until such panels are fabricated and cost/weight functions can be es-
tablished. 
 The products to be harvested from this part, which are of benefit to 
Boeing, include the determination of combined optimum material properties 
and geometric arrangements.  Since one seeks optimum parameters, the 
work of this section is by its very nature analytical and does not lend itself to 
numerical FEM formulations at this stage. 
 
 Part II – As optimum material properties become available through 
Part I analyses, the use of appropriate FEM protocols for the fabric knit pan-
els will be investigated.  A determination will be made whether existing 
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employing viscoelastic functionally graded materials3 (VFGM), which yield the
best results.

For solar sails made of composite materials, such as a one consisting of
multiple layers of differently oriented fibers embedded in a matrix of a distinct
material, the so called ply angle of the fibers is of utmost importance as it is
a fundamental contributor to the composite material properties. The second
illustration, Fig. 14, demonstrates an optimum ply angle to achieve (L/D)max
and hence an optimum solar wind thrust condition. Finally, Fig. 10 illustrates a
typical optimized low drag airfoil shape derived by optimized analysis protocols.

5. Conclusions

The general system of systems analysis is simplified in an illustrative problem
which demonstrates the importance of a few optimized parameters. Flight con-
ditions can be markedly improved by adding additional variables and constraints
to the simple illustrative problem. The availability of mega computers, such as
as UIUC’s NCSA peta scale Blue Waters [114] makes it possible to simultane-
ously solve in parallel large numbers of analytic and numerical relations. Hence
making optimization of an entire vehicle’s performance possible [112].
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