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Abstract

This work couples a Vortex Lattice Method, VLM, to a refined one-dimensional struc-
tural model based on Carrera Unified Formulation, CUF. Airfoil in-plane deformation
and warping are introduced by enriching the displacement field over the cross-section
of the wing. Linear to fourth-order expansions are adopted and classical beam theories
(Euler-Bernoulli and Timoshenko) are obtained as particular cases. The VLM aero-
dynamic theory is coupled via an appropriate adaptation of the Infinite Plate Spline
method to the structural finite element model. A number of wing configurations (by
varying aspect ratio, airfoil geometry, dihedral, and sweep angle) and load cases are
analyzed to assess both the calculation of aerodynamic loadings and the influence of
in-plane airfoil deformation to the static response of the wing. Comparison with shell
results of commercial software such as MSC Nastran, which is taken as reference so-
lution, is carried out and discussed. The importance of higher-order models for an
accurate evaluation of local and global response of aircraft wings is shown.

1. Introduction

The accurate structural response of deformable lifting bodies (LBs) when sub-
jected to steady and unsteady aerodynamic loadings consists in a typical chal-
lenging issue for the aeroelastic design of aerospace vehicles. This topic mostly
involves the three following points: accurate evaluation of aerodynamic loadings
for a given LB geometry; description of deformation of LBs when subjected to
known forces; interaction between aerodynamics and structural behavior. A
number of significant contributions have been given on these matters. First
[31], [4], and then more recent books such as [37] and [60] describe in detail
known methods and techniques used to define the aeroelastic phenomena of LBs.
The accessibility to commercial software such as MSC Nastran and ZAERO al-
lows the effectiveness and robustness of some available aeroelastic models to be
demonstrated.

In order to develop tools able to work at any regime and with any LB
geometry (including rotating blades), literature from the last decades has been
widely influenced by research devoted to building reliable methods to couple
computational fluid dynamics, CFD (at any regime, viscid and inviscid), with
the finite element method, FEM, for the structural modeling, see Farhat [30].
Many review articles about fluid-structure interaction have been written and
those by Dowell and Hall [26], Guruswamy [33], Kamakoti and Shyy [39], and
Henshaw et al.[36] are herein mentioned. Recent advances in describing fluid-
structure interaction for flapping wing aeroelasticity can be found in Shyy et
al.[52].

Among the various issues involved in aeroelastic design, the present work
focuses on the development of advanced one-dimensional computational struc-
tural models for aircraft wings. Compared to plates and shells, 1D models
require less computational effort. This requisite is of particular interest for the
analysis of those aeroelastic problems in which a strong non-linear coupling
must be described. The one-dimensional models used in early studies of wing-
like structures were based on classical beam theories, such as those founded on
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Euler-Bernoulli’s [29] and Timoskenko’s [56] assumptions. Unfortunately, airfoil
in-plane deformation and warping is not taken into account by these models.
As a consequence, classical beam models do not capture with sufficient accuracy
the displacement field necessary for an efficient aeroelastic CFD-FEM coupling.
Therefore it is not surprising that well known aerodynamic techniques such as
the Vortex Lattice Method (VLM) and the Doublet Lattice Method (DLM)
normally refer to wings modelized by plates/shells. However, advanced 1D
structural models would permit a useful and not less effective interaction with
CFD as well as with VLM and DLM.

In the past, many attempts have been proposed to overcome the limitations
of classical beam theories and to permit the application of 1D models to any
wing geometry. In addition to many examples described in well-known books
on the theory of elasticity (see [46]), recently developed beam models have been
obtained via different approaches:

- introduction of shear correction factors;

- use of warping functions;

- variational asymptotic solutions (VABS);

- generalized beam theories (GBT);

- higher-order beam models.

A review was carried out by Kapania and Raciti [40, 41], whereas a recent
detailed review of such models can be found in Carrera et al.[17]. A considerable
amount of work has been done in trying to improve the global response of
classical beam theories using appropriate shear correction factors, as in the
books by Timoshenko [56] and Sokolnikoff [55]. Among the many available
articles, the works by Cowper [21], Murthy [43], and Mechab et al.[45] are of
particular interest. El Fatmi [27, 28] improved on the displacement field over the
beam cross-section by introducing a warping function to refine the description
of normal and shear stress of the beam.

An asymptotic type expansion in conjunction with variational methods has
been proposed by Berdichevsky et al.[3], where a commendable review of prior
works on beam theory development is given. A characteristic parameter (e.g.
the cross-section thickness) is adopted to build an asymptotic series. The terms
which exhibit the same order of magnitude as the parameter when it vanishes
are retained. This work has been the origin of an alternative approach in formu-
lating refined beam theories, which has leaded to an extensive contribution in
last decade by Volovoi, Hodges, Popescu [58, 47], Yu and co-workers [62, 61] on
asymptotic variational methods (VABS). Generalized beam theories originated
with Schardt’s work [50, 51]. GBT improves classical theories by using a piece-
wise beam description of thin-walled sections. It has been extensively employed
and extended in various forms by Silvestre and co-workers [54, 53, 25].

Many other higher-order theories have been proposed to include non-classical
effects based on enhanced displacement fields over the beam cross-section. Some
considerations on higher-order beam elements were made byWashizu [59]. Aeroe-
lastic problems of thin-walled beams are considered in the article by Librescu
[44]. Giavotto et al.[32] presented an innovative formulation to calculate the
stiffness and stresses of a beam section made of anisotropic and non-homogeneous
materials via a FE approach. The above literature overview clearly shows the
interest in further developments in refined theories for wing structures.

Due to that interest, Carrera and co-authors have recently proposed refined
1D theories with only generalized displacement variables for the analysis of
compact and thin-walled sections/airfoils. Higher-order models are obtained in
the framework of the Carrera Unified Formulation, CUF. This formulation has
been developed over the last decade for plate/shell models [5, 6, 7, 10] and it has
recently been extended to beam static and dynamic modeling [11, 12, 15, 16, 14,
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(a) Origin within the cross-section (b) Origin outside the cross-section

Figure 1: Beam’s cross-
section geometry and co-
ordinate system.

13]. CUF is a hierarchical formulation which considers the order of the model as
a free-parameter (i.e. an input) of the analysis. In other words, refined models
are obtained with no need for ad hoc formulations. Beam theories are obtained
on the basis of Taylor-type expansions. Euler-Bernoulli and Timoshenko beam
theories are obtained as particular cases of the first-order expansion. The finite
element method is used to handle arbitrary geometries as well as geometrical
and loading conditions.

The present work couples a refined one-dimensional model based on CUF
with the Vortex Lattice Method (VLM) for the analysis of static response of
aircraft wings. The computation of linear steady aerodynamic loads refers to
the Vortex Lattice Method presented by Katz and Plotkin [42]. The VLM is a
3D, free wake aerodynamic method widely used even in recent static aeroelastic
problems [1] and implemented in some free codes such as Tornado and Neo-
CASS. It is the steady flow version of the Doublet Lattice Method, an unsteady
aerodynamic tool implemented in commercial codes such as MSC Nastran for
aeroelastic analysis. The aerodynamic load transfer to the structural mesh is
based on the work presented by Demasi and Livne [24, 23] via the Infinite Plate
Spline model introduced by Harder et al.[34, 35], and Rodden et al.[49]. The
proposed formulation couples the hierarchical one-dimensional structural ele-
ments with the Infinite Plate Spline by using the concept of pseudo-structural
points. The latter technique could be easily extended to the analysis of static
aeroelastic response of lifting surfaces, see Varello et al.[57].

The paper is organized as follows: after the discussion of the theoretical
model, several applications on a number of wing configurations are presented.
Assessments of both the aerodynamic and structural models are carried out.
Due to the high accuracy used to represent the displacement field of the struc-
ture, it is concluded that the present model is ideal for aerolastic applications,
as inferred in the concluding preliminary aeroelastic study. This work shows
how the Vortex Lattice Method is coupled with the proposed advanced beam
model, but it is not limited to panel methods: high fidelity CFD codes can be
successfully used.

2. Preliminaries

A beam is a structure whose axial length L is predominant with respect to the
two other orthogonal dimensions. The intersection of the beam with a plane
that is perpendicular to its axis identifies the so-called beam’s cross-section Ω.
As shown in Fig. 1, a local cartesian coordinate system composed of x and z
axes parallel to the cross-section plane is defined, whereas y represents the out-
of-plane coordinate. However, the y axis is not necessarily a centroidal one.
Moreover, the cross-sections are not necessarily perpendicular to the geometric
axis of the beam. This gives high versatility to the present structural beam
model. ux, uy, and uz are the cartesian components of the displacement vector:

u
(
x, y, z

)
=

{
ux uy uz

}T

(1)
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where superscript T stands for the transposition operator. The stress, σ, and
the strain, ε, are grouped in vectors as follows:

σp =
{
σzz σxx σzx

}T

εp =
{
εzz εxx εzx

}T

σn =
{
σzy σxy σyy

}T

εn =
{
εzy εxy εyy

}T (2)

Subcript n refers to quantities related to the beam cross-section Ω, whereas
subscript p refers to quantities related to the out-of-plane direction. In the case
of small displacements with respect to the length L, the linear relations between
strain and displacement components hold and a compact vectorial notation can
be adopted:

εp = Dp u

εn = Dn u = Dnp u + Dny u
(3)

where Dp, Dnp, and Dny are differential matrix operators:

Dp =




0 0
∂

∂z

∂

∂x
0 0

∂

∂z
0

∂

∂x



, Dnp =




0
∂

∂z
0

0
∂

∂x
0

0 0 0



, Dny =




0 0
∂

∂y

∂

∂y
0 0

0
∂

∂y
0




(4)

The generalized Hooke’s law for isotropic materials holds:

σ = C ε (5)

According to Eq. 2, the previous expression becomes:

σp = Cpp εp + Cpn εn

σn = Cnp εp + Cnn εn
(6)

where matrices Cpp, Cpn, Cnp and Cnn are:

Cpp =




C11 C12 0
C12 C22 0
0 0 C44


 , Cpn = C T

np =




0 0 C13

0 0 C23

0 0 0


 ,

Cnn =




C55 0 0
0 C66 0
0 0 C33




(7)

For the sake of brevity, the dependence of the coefficients Cij on Young’s moduli,
Poisson’s ratios, and shear moduli is not reported here. It can be found in
Reddy [48] or Jones [38]. In this paper isotropic materials will be considered.
The extension to composite beams will be presented in future papers.

3. Refined Beam Theory

According to the framework of the Carrera Unified Formulation (CUF) [7, 22],
the displacement field is assumed to be an expansion of a certain class of func-
tions Fτ , which depend on the cross-section coordinates x and z:

u (x, y, z) = Fτ (x, z) uτ (y) τ = 1, 2, . . . , Nu = Nu (N) (8)

The compact expression is based on Einstein’s notation: repeated subscript
τ indicates summation. The number of expansion terms Nu depends on the
expansion order N , which is a free parameter of the formulation. Mac Laurin’s
polynomials are chosen as cross-section functions Fτ and are listed in Table 1.

Vol. 2, No. 2, pp. 53–78 ASDJournal



A. Varello, E. Carrera and L. Demasi
∣∣∣ 57

N Nu Fτ

0 1 F1 = 1
1 3 F2 = x F3 = z
2 6 F4 = x2 F5 = xz F6 = z2

...
...

...

N (N+1)(N+2)
2 F (N2+N+2)

2

= xN . . . F (N+1)(N+2)
2

= zN

Table 1: Number of ex-
pansion terms and Mac
Laurin’s polynomials as a
function of N .

Most displacement-based theories can be formulated on the basis of the above
generic kinematic field. For instance, when N = 2, the second-order axiomatic
displacement field is given by:

ux = ux1 + ux2 x + ux3 z + ux4 x
2 + ux5 xz + ux6 z

2

uy = uy1 + uy2 x + uy3 z + uy4 x
2 + uy5 xz + uy6 z

2

uz = uz1 + uz2 x + uz3 z + uz4 x
2 + uz5 xz + uz6 z

2
(9)

Subsequently, the classical beam models such as Timoshenko’s (TBM) [56] and
Euler-Bernoulli’s (EBBM) [29], are easily derived from the first-order approx-
imation model. Timoshenko’s beam model (TBM) can be obtained by setting
terms { uij : i = x, z ; j = 2, 3 } equal to zero. In addition, an infinite rigidity
in the transverse shear is also adopted for EBBM by penalizating εxy and εyz
via a high penalty value in the following constitutive equations:

σyz = C55 εyz σxy = C66 εxy (10)

Higher-order models provide an accurate description of the shear mechanics, the
cross-section deformation, Poisson’s effect along the spatial directions and the
torsional mechanics in more detail than classical models do. EBBM neglects
them all, since it was formulated to describe the bending mechanics. TBM ac-
counts for constant shear stress and strain components. Classical theories and
first-order models require the assumption of opportunely reduced material stiff-
ness coefficients to correct Poisson’s locking effect [8, 9]. According to Carrera
and Giunta [11], the same technique is used here to correct Poisson’s locking.

4. Finite Element Formulation

Following standard FEM, the unknown variables in the element domain are
expressed in terms of their values corresponding to the element nodes [16]. By
introducing the shape functions Ni and the nodal displacement vector q, the
displacement field becomes:

u (x, y, z) = Fτ (x, z)Ni (y) qτi i = 1, 2, . . . , NN (11)

where:

qτi =
{
quxτi

quyτi
quzτi

}T

(12)

contains the degrees of freedom of the τ th expansion term corresponding to the
ith element node. Elements with NN number of nodes equal to 2, 3 and 4 are
formulated and named B2, B3, and B4, respectively. The results reported in
the present work involve only B4 elements. For the sake of brevity, more details
are not reported here, but can be found in Carrera et al.[12, 15]. This beam
model can be easily extended to mixed theories. However, this work presents a
displacement-based formulation. The variational statement is then the Principle
of Virtual Displacements:

δLint =

∫

V

(
δεT

n σn + δεT
p σp

)
dV = δLext (13)
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where δLint is the internal virtual work and δLext is the external virtual work.
Substituting Eq. 11 into Eq. 3 and using the fact that Fτ are independent of y,
the strain vectors can be written as:

εn =
(
Dnp Fτ I

)
Ni qτi + Fτ

(
Dny Ni I

)
qτi

εp =
(
Dp Fτ I

)
Ni qτi

(14)

Therefore, the expression of the internal virtual work (Eq. 13) can be rewritten
in terms of virtual nodal displacements as follows:

δLint = δqT
τi K ij τ s qsj (15)

where Eq. 6 has been used. The 3 × 3 fundamental nucleus of the structural
stiffness matrix presented in Eq. 15 can be shown to have the following explicit
equation:

K ij τ s = I
ij

l ⊳
(
D T

np Fτ I
)[

Cnp

(
Dp Fs I

)
+ Cnn

(
Dnp Fs I

)]
+

(
D T

p Fτ I
)[

Cpp

(
Dp Fs I

)
+ Cpn

(
Dnp Fs I

)]
⊲ Ω +

I
ij,y
l ⊳

[ (
DT

np Fτ I
)
Cnn +

(
D T

p Fτ I
)
Cpn

]
Fs ⊲ Ω IΩ y +

I
i,y j

l IΩ y ⊳ Fτ

[
Cnp

(
Dp Fs I

)
+ Cnn

(
Dnp Fs I

)]
⊲ Ω +

I
i,y j,y
l IΩ y ⊳ Fτ Cnn Fs ⊲ Ω IΩ y

(16)

where:

IΩ y =




0 1 0
1 0 0
0 0 1


 ⊳ . . . ⊲ Ω =

∫

Ω

. . . dΩ (17)

(
I
ij

l , I
ij,y
l , I

i,y j

l , I
i,y j,y
l

)
=

∫

L

(
NiNj , NiNj,y , Ni,y Nj , Ni,y Nj,y

)
dy (18)

The symbol ⊳ . . . ⊲ Ω indicates integration over the cross section. It should be
noted that no assumptions on the expansion order have been made. Therefore, it
is possible to obtain refined beam models without changing the formal expression
of the nucleus components. The present model is invariant with respect to the
order of the beam theory and the type of element used in the finite element
axial discretization. Shear locking is corrected through selective integration [2].

5. Structural and Aerodynamic Notations

Classical beam models provide acceptable results only for relatively high aspect
ratio beams. With the proposed hierarchical beam formulation based on CUF,
the accuracy of the axiomatic model can be freely increased. This implies that
the present method can be used for relatively small aspect ratio. Therefore, it is
an ideal tool to analyze large aspect ratio wings typical of High Altitude Long
Endurance vehicles and small aspect ratio wing configurations such as delta
wings, see [12, 15, 19]. Moreover, as will be presented in this work, non-planar
configurations can be successfully addressed with the present structural beam
model.

A global coordinate system x−y−z is placed on the airfoil’s leading edge
point at the wing root section. The global x axis is parallel to the free stream
velocity V∞ and directed toward the trailing edge. The global z axis also lies
in the aircraft’s plane of symmetry, whereas the y axis goes along the spanwise
direction.

The proposed beam model can easily analyze tapered wings with dihedals
and sweep angles. The aerodynamic mesh is on a reference trapezoidal surface
with 2 edges parallel to the wind direction. Then a second coordinate system
xloc′−yloc′−zloc′ with the same origin as the global one is introduced so that the
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dimensional struc-
tural mesh and two-
dimensional aerodynamic
mesh of wing segments.
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Figure 3: The horse-
shoe convention followed
for the VLM.

reference surface lies on the plane xloc′−yloc′ . The xloc′ and x axes are parallel
to V∞ (see Fig. 2).

The wing is modeled with a straight beam. The structural mesh is contained
on the trapezoidal reference surface. An additional local coordinate system is
used to identify the 1D structural mesh on the beam. yloc is the axis of the
beam (see Fig. 2), whereas zloc is perpendicular to the trapezoidal surface.

The aerodynamic method here chosen is the Vortex Lattice Method (VLM)
[42]. The aerodynamic mesh, which consists in a lattice of NAP quadrilateral
panels, lies on the trapezoidal reference surface. A horseshoe element is placed
on each panel and the typical scheme is shown in Fig. 3. The aerodynamic force
is applied at the load point PL, whereas the wall tangency condition is imposed
at the control point PC .

6. Aerodynamic Load Transfer

The fundamental nucleus (see Eq. 16) was derived in the local coordinate system
xloc−yloc−zloc. For reasons that will appear clear later, the notation is slightly
modified to reflect this fact:

δLint = δqT
τi loc K

ij τ s
loc qsj loc (19)

The present capability is aimed at the analysis of generic wing configurations in-
cluding non-planar joined wings. This requires the writing of the finite element
stiffness matrix in the global coordinate system. This can be accomplished by
expressing the vector qτi loc of local nodal degrees of freedom in global coordi-
nates as follows:

qτi loc = e · qτi (20)

where e is a 3×3 rotation matrix. Substituting Eq. 20 into Eq. 19, the expression
of the fundamental nucleus in the global coordinate system is obtained:

δLi = δqT
τi

[
eT · K ij τ s

loc · e
]
qsj = δqT

τi K ij τ s qsj (21)
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Figure 4: Shaded
area on which a set of
pseudo-structural points
is placed.

 O loc

 yloc

 x loc

Generic pseudo-structural point

Corresponding FE

The finite element assembly procedure to build K enforces the compatibility of
the displacements expressed in global coordinates.

6.1 Splining and Pseudo-Structural Points

The present advanced beam model allows a very accurate calculation of the
displacement field at all points of the three-dimensional wing. Based on this
property, it is possible to effectively use the Infinite Plate Spline (IPS) method
[34, 20, 63] for the aerodynamic load transferring. The transfer of aerodynamic
pressure on the structural nodes requires the displacements at load points to
be written in terms of the nodal displacement vector q. The spline satisfies
this requirement wherever the generic load point PL lies on the wing reference
surface.

The Infinite Plate Spline method [23, 24, 34] was shown (see [57]) to be
the ideal choice for the advanced multi-fidelity beam model presented in this
work. The spline technique is here preparatory for the aeroelastic extension of
the present work, in which the splining will directly provide the calculation of
the local slopes necessary for the interfacing wall-tangency boundary condition.
A brief description of the splining procedure is now provided. The coordinate
system xloc′ −yloc′ −zloc′ is used for the splining of a generic trapezoidal sur-
face. A set of NPS points is chosen in the shaded area shown in Fig. 4. The
displacements of these points can be accurately calculated with the advanced
beam model and are used for the splining. This set of points is not part of
the element structural nodes. However, they are “seen” as structural points in
the splining. For that reason, the points on the shaded area are indicated as
pseudo-structural points. They are not coincident with the finite element nodes.

By defining x as the vector containing the global coordinates of pseudo-
structural points, their coordinates xloc′ expressed in the local′ reference sys-
tem are determined by introducing the block diagonal matrix EPS

Γ , which is a
transformation matrix. Similarly, the local coordinates xloc are computed by
means of a transformation matrix EPS and vector xOloc

, in which the global
coordinates of the origin point Oloc are repeated as many times as NPS :

xloc′ = EPS
Γ · x xloc = EPS · (x − xOloc

) (22)

The nodal displacement vector q in global coordinates can be referred to the
local coordinate system (see Eq. 20) by using a transformation matrix E as
follows:

qloc = E · q (23)

To compute the displacement of each pseudo-structural point it is necessary
to identify which finite element has to be associated with the given pseudo-
structural point. This is accomplished by calculating the local coordinate yloc
from vector xloc and by selecting the corresponding finite element as shown in
Fig. 4. Everything is expressed in local coordinates, thus the FEM equation 11
can be used to calculate the local displacement of the generic pseudo-structural
point according to CUF. By using Eq. 23 again, it is useful to define a matrix
Y which relates the vector of nodal DOFs expressed in local coordinates with
the displacements ûloc (in local coordinates) of all the pseudo-structural points.
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Thus, calling Iz the constant matrix which allows the extraction of zloc compo-
nent of the local displacements and noting that zloc and zloc′ axes are parallel,
Eq. 24 can be formulated:

Zloc′ = Zloc = Iz · ûloc = Iz · Y · qloc = Iz · Y · E · q (24)

VectorZloc′ contains the local
′ transverse coordinates of pseudo-structural points

in the deformed configuration and so the input data for the spline method. By
using the fitted surface spline it is possible to calculate the zloc′ coordinate of
any point lying on this shape. This also applies to load points placed in the not
shaded area (Fig. 4).

In this paper both the aerodynamics and the structure are analyzed with
linear models. Linearity implies that the displacements are small. Consequence
of this assumption is that the local′ in-plane coordinates do not change even if
the structure deforms. In other words, the splining matrices are constant and
can be calculated once.

According to the IPS method, the Zi loc′ for the corresponding ith pseudo-
structural point is written as:

Zi loc′ = a0 + a1 xi loc′ + a2 yi loc′ +

NPS∑

j=1

F̂j K̂ij (25)

where:
K̂ij =

(
rij loc′

)2
ln
(
rij loc′

)2
(26)(

rij loc′
)2

=
(
xi loc′ − xj loc′

)2
+

(
yi loc′ − yj loc′

)2
(27)

For the sake of brevity, the details about the IPS method [34, 20] are not reported
here. By writing Eq. 25 for all the pseudo-structural points, it can be shown
that the following matrix notation is obtained:

Z⋆
loc′ =

[
0 R

RT K̂

]
· P = G · P (28)

Vector Z⋆
loc′ is coincident with Zloc′ except for the fact that three zero rows are

added [63]. By inverting Eq. 28, it is possible to find the NPS + 3 components
of vector P . The components represent the spline coefficients a0, a1, a2, and
F̂js.

The equation of the spline can be used to calculate the displacements at
any selected point and therefore to compute the equivalent nodal aerodynamic
forces. The next phase will show how to transform lift forces at aerodynamic
load points into equivalent nodal forces on the structural grid. This transfor-
mation will involve the displacements of load points. Let

(
X̃k loc′ , Ỹk loc′

)
be

the local′ coordinates of the kth load point. Its coordinate along the zloc′ axis
is given by:

Z̃k loc′ = a0 + a1 X̃k loc′ + a2 Ỹk loc′ +

NPS∑

j=1

F̂j K̃kj (29)

where:
K̃kj =

(
R̃kj loc′

)2
ln
(
R̃kj loc′

)2
(30)(

R̃kj loc′
)2

=
(
X̃k loc′ − xj loc′

)2
+

(
Ỹk loc′ − yj loc′

)2
(31)

Following the presented procedure for all the NAP load points, their displace-
ments can be written as functions of the spline coefficients in a compact form:

Z̃ loc′ = D̃
⋆
· P (32)

An expression that directly relates the local′ transverse coordinates of the load
points to the local′ transverse coordinates of the pseudo-structural points can
be obtained by substituting Eq. 28 into Eq. 32:

Z̃ loc′ = D̃
⋆
· P = D̃

⋆
· G−1 · Z⋆

loc′ = D̃
⋆
· S · Zloc′ (33)
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where G−1 is the inverse matrix of G. The matrix S is the (NPS + 3) ×NPS

matrix obtained from G−1 by eliminating the first three columns, since the first
three rows of Z⋆

loc′ are zero. Finally by combining Eqs. 24 and 33, the following
expression relates the displacement vector at load points to the vector of nodal
degrees of freedom of the whole structure:

Z̃ loc′ = D̃
⋆
· S · Iz · Y · E · q = Ã⋆

3 · q (34)

6.2 Steady Aerodynamic Forces

The derivation of aerodynamic loads is now faced. According to the Vortex
Lattice Method [42], the pressures acting on the wing are transferred as lift forces
located on load points of the aerodynamic panels. Considering the dimensionless
pressure ∆pj acting on the generic jth panel, the modulus of the lift force applied
at the corresponding load point is given by:

Lj =
1

2
ρ∞ V 2

∞
∆xj 2ej ∆pj (35)

where the quantity ∆xj is the average chord of the panel and ej refers to its
half-length along the yloc′ axis (wing spanwise direction, see Fig. 3). Since the
reference aerodynamic configuration has no angle of attack, it should be noted
that lift forces are perpendicular both to the panels and to the wind direction.
Let ∆p be the vector containing the dimensionless pressure loads acting on all
the aerodynamic panels of the structure, normalized with respect to the dynamic
pressure. The lift forces moduli are written in matrix form:

L =
1

2
ρ∞ V 2

∞
ID · ∆p (36)

where ID contains the panels’ geometrical data. The VLM allows the dimension-
less normalwash, normalized with respect to V∞, to be described as a function
of the pressures acting on each aerodynamic panel:

w = AD · ∆p (37)

where AD is the Aerodynamic Influence Coefficient Matrix. It is calculated
using the geometrical data of the aerodynamic mesh. The wall tangency condi-
tion is imposed at the control point of each panel by setting the dimensionless
normalwash to be equal to the local slope.

w = tan
(
π − α

)
(38)

where the angle of attack α is a small quantity (linear aerodynamic model).
Combining Eqs. 37 - 38 and substituting in Eq. 36, the vector containing the
aerodynamic forces is written as a function of nodal DOFs:

L =
1

2
ρ∞ V 2

∞
ID ·

[
AD

]−1
· w

=
1

2
ρ∞ V 2

∞
tan

(
π − α

)
ID

[
AD

]−1
d =

1

2
ρ∞ V 2

∞
tan

(
π − α

)
b

(39)

where d stands for a NAP × 1 vector of ones and b = ID
[
AD

]
−1

d.
The aerodynamic loads L of Eq. 39 are concentrated forces applied at the

load points of the aerodynamic panels. They are transformed into energetically
equivalent nodal loads by the following algorithm. All the lift forces are parallel
to the zloc′ axis (see Fig. 3). The transfer of loads at the aerodynamic points
to the energetically equivalent loads at structural nodes is performed via the
Principle of Virtual Displacements. The work done by the aerodynamic forces
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(vector L) applied at the load points is equated to the work done by the equiv-
alent nodal forces (right hand side vector LRHS). Using Eq. 34 it is possible to
write:

δW = δZ̃
T

loc′ · L =
{
Ã⋆

3 · δq
}T

· L = δqT · Ã⋆
3

T
· L = δqT · LRHS

⇒ LRHS = Ã⋆
3

T
· L

(40)

where the virtual variation of nodal degrees of freedom q is considered. By using
Eq. 39, the vector of nodal forces energetically equivalent to the aerodynamic
loads can be written as:

LRHS = Ã⋆
3

T
· L =

1

2
ρ∞ V 2

∞
tan

(
π − α

)
Ã⋆

3

T
· b (41)

In conclusion, the nodal displacement vector q can be computed by solving the
linear system:

K · q = LRHS (42)

where K is the structural stiffness matrix built by Eqs. 16 and 21. For the
structural problem, it should be noticed that LRHS does not depend on the
nodal displacement vector q. The aeroelastic extension of the formulation will
take a wall-tangency boundary condition (Eq. 38) depending on the deflection q

into account. Hence, the aerodynamic loads due to the deformed configuration
will lead to the aeroelastic stiffness matrix [57].

7. Results and Discussion

Several conventional wing configurations are analyzed in this work and the re-
sults are presented here. They are subjected to aerodynamic, bending, and
torsional loadings. Cantilever boundary condition is accounted for. For all
cases aluminium is considered (Young’s modulus E = 69 [GPa] and Poisson’s
ratio ν = 0.33). The air density is assumed to be ρ∞ = 1.225 [kg/m3].

The wing shapes examined in this work are summarized in Table 2. The
first beam is named configuration A and consists of a swept tapered wing. The
aspect ratio AR is defined as the square of the wingspan b divided by the area of
the wing planform Sw and is equal to 10 for configuration A. Thus its half-wing
corresponds to a cantilever beam which has a span-to-mean chord ratio L/c̄
equal to 5. Configuration B has the same value for L/c̄, but is straight with a
taper ratio λ equal to 1. A slender wing is introduced and named configuration
C. Essentially, its geometry is analogous to configuration B, with the only differ-
ence of a higher value for the parameter L/c̄. Wing D is dihedral with a taper
ratio equal to 0.25 as in the swept configuration A, whereas the parameter L/c̄
is higher. Configuration E is a forward swept wing with the same properties as
those of configuration A, with an opposite sweep angle (negative). Last wing,
which is named with letter F, has the same geometry as configurations A and E,
with the sole difference of a null sweep angle. A further flat plate configuration
will be afterwards involved and detailed for the aeroelastic response study.

The beam-like structures are considered to have an airfoil-shaped section or
a thin-walled rectangular cross-section. With the exception of configuration D,
the NACA 2415 airfoil is adopted as cross-section profile, which is subdivided
into three cells. The cells are obtained by inserting two spars along the span-wise
direction at 25% and 75% of the chord length, see Fig. 5a. Their thicknesses
are, respectively, 10% and 7% of the maximum airfoil thickness, whereas the
percentage is about 4% for the skin. Configuration D has the thin-walled rect-
angle shown in Fig. 5b as cross-section. The thickness of the skin is 5% of the
rectangle’s height. The considered height-to-chord length ratio is 0.1.
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Table 2: Wing configu-
rations adopted to discuss
the results.

Name A B C D E F

Section Airfoil Airfoil Airfoil Wing box Airfoil Airfoil
Λ + 13.5° 0° 0° 0° - 13.5° 0°
Γ 0° 0° 0° 10° 0° 0°
λ 0.25 1 1 0.25 0.25 0.25
croot [m] 1.6 1 0.2 1.6 1.6 1.6
ctip [m] 0.4 1 0.2 0.4 0.4 0.4
c̄ [m] 1 1 0.2 1 1 1
L [m] 5 5 4 7 5 5
L/c̄ 5 5 20 7 5 5
b [m] 10 10 8 14 10 10
Sw [m2] 10 10 1.6 14 10 10
AR 10 10 40 14 10 10

Airfoil: NACA 2415 airfoil with 3 cells.

Wing box: thin-walled rectangular cross-section.

Λ: sweep angle Γ: dihedral angle λ: taper ratio c̄: mean chord

L: beam’s length b: wingspan Sw: wing area AR: aspect ratio

Figure 5: Cross-sections
used for the wing
configurations.

(a) NACA 2415 with 3 cells (b) Thin-walled rectangle

Table 3: Effect of V∞

and α on uzmax. Config-
uration A. Aerodynamic
mesh: 4× 40 panels.

Theory : N = 3 20 B4 elements 4× 40 panels

V∞ [m/s] 30 40 50 60 70

α = 1° 0.4179a 0.7429 1.1608 1.6716 2.2753

α = 5° 2.0946 3.7238 5.8184 8.3785 11.404

a
Maximum displacement uz max [mm]
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7.1 Aerodynamic Model Assessment

The first assessment examines the aerodynamic implications closely related to
the Vortex Lattice formulation. Wing configurationA is discretized by 20 refined
B4 elements and an aerodynamic mesh composed of 4 × 40 panels is set on the
surface of the structure. The angle of attack α of the wing and the free stream
velocity V∞ are considered as free parameters of the first analysis. The former
ranges from 30 to 70 [m/s], whereas the latter varies from 1° to 5°. The effect
of such parameters on the maximum displacement uzmax is investigated and
shown in Table 3, where the expansion order is N = 3.

The quantities α and V∞ affect the pressure distribution and the deflection
of the wing only in value, but not in shape. The trend of uzmax confirms the
correlation of the Lift Forces with tan

(
π−α

)
and the square of V∞ as expressed

in Eq. 39. As in the following analyses, the symmetry condition is exploited in
the aerodynamic computation and the cantilever right half-wing of the structure
is considered.

The second analysis investigates the pressure distribution on a wing. In
order to check the VLM implementation, an assessment with two reference swept
configurations is faced. A back-swept wing with Λ = 45° and a forward swept
wing with Λ = −45° are considered [42]. The span-to-mean chord ratio L/c̄ is
equal to 2 and the terms Cl and CL are introduced as follows:

Cl (y) =
L⋆(y)

1

2
ρ∞ V 2

∞
2 e (y) c (y)

CL =
Ltot

1

2
ρ∞ V 2

∞

b c̄

2

(43)

where c (y) and L⋆(y) are the chord and the Lift Force generated by the pressure
acting on the panels with span-length 2 e (y) placed at the y coordinate. Ltot

is the Total Lift Force acting on the right half-wing. The trend of the Cl

CL
ratio

along the y axis is shown for both the swept wings in Fig. 6. In the computation
two different aerodynamic meshes are involved, differing in shape and in the total
number of panels. It is interesting to note the effect of the sweep angle Λ on
the pressure distribution along the spanwise direction. A slight dependence on
the aerodynamic mesh used is furthermore detected and notable mainly for the
back-swept case. An excellent agreement with the results obtained by Katz and
Plotkin [42] is achieved. For the straight configuration B it has been verified
that the maximum pressure acts on the leading edge of each section, with an
overall maximum placed on the root cross-section. The pressure distribution
decreases as y increases according to the low-speed aerodynamics of aircraft
straight wings [42].

The third analysis focuses on the effect on the results of the aerodynamic
mesh in shape and refinement. Configuration B is discretized via a uniform
lattice of panels with a variable panel ratio (PR). The panel ratio is a param-
eter defined as the ratio between the chordwise and spanwise lengths of the
aerodynamic elements used. In other words, it represents the mesh shape. The
Total Lift Force Ltot and the Total Aerodynamic Moment Mtot with respect
to the quarter chord line acting on the right half-wing as the number of panels
changes is reported in Table 4. It is interesting to note that the results are
different according to the panels’ aspect ratio. For instance, considering panel
ratio as equal to 0.5 and panel ratio as equal to 2.0 with the same NAP = 40,
the aerodynamic loadings differ. The same situation recurs for NAP = 160. As
expected, the convergent trend for the VLM is verified for every panel ratio.

7.2 Structural Model Assessment

The fourth assessment of the present work discusses the effect of the structural
parameters for the first four wings listed in Table 2 undergoing an aerodynamic
load.
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Figure 6: Effect of the
sweep angle on the span-
wise loading for two refer-
ence untapered wings.
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Table 4: Convergence
study: Effect of the aero-
dynamic mesh on Total
Lift Force and Total Aero-
dynamic Moment. Con-
figuration B.

V∞ = 50 m/s α = 3 deg Theory : N = 3 20 B4 el.

Number of panels along x axis

Panel
ratio

2 4 6 8 10

0.5
(10)a

2039.1b

-516.86c

(40)
1995.9
-758.85

(90)
1979.2
-835.90

(160)
1970.4
-873.62

(250)
1965.0
-895.97

1.0
(20)
1994.7
-506.98

(80)
1970.1
-749.77

(180)
1961.2
-828.70

(320)
1956.6
-867.75

(500)
1953.8
-891.04

2.0
(40)
1968.4
-500.78

(160)
1956.1
-744.69

(360)
1951.7
-824.83

(640)
1949.4
-864.65

(1000)
1948.0
-888.47

a
(Total number of panels NAP )

b
Total Lift Force Ltot [N]

c
Total Aerodynamic Moment Mtot [Nm]
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V∞ = 50 m/s α = 3 deg 4× 40 panels

NEL EBBM TBM N = 1 N = 2 N = 3 N = 4

2 8.8021 8.8119 8.8189 8.2425 8.3508 8.3686
5 8.8021 8.8119 8.8189 8.4300 8.5586 8.5805
10 8.8021 8.8119 8.8189 8.4880 8.6202 8.6431
20 8.8021 8.8119 8.8189 8.5159 8.6485 8.6723
40 8.8021 8.8119 8.8189 8.5285 8.6607 8.6854

+1.451% +1.564% +1.645% -1.702% -0.179% +0.106 %

Nastran (solid - sol 101): 8.6762

Table 5: Convergence
study: Effect of the num-
ber of B4 elements on
uz max [mm] for different
beam models. Configura-
tion B.

(a) Configuration B
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(b) Configuration C
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Figure 7: Maximum
transverse displacement
uz max as a function of
the structural mesh and
the models involved for
straight wings.

Configuration B rotated with an angle of attack α = 3° and exposed to
a free stream with V∞ = 50 [m/s] is considered. Referring to Table 4, the
aerodynamic mesh used is fixed to 4 × 40 panels, since it offers both accuracy
and low computational cost. A structural convergence study is carried out to
evaluate the combined effect of the number of Finite Elements NEL and the
expansion order N on the solution. The mechanics of the beam is described
in terms of the maximum vertical displacement uzmax, which is located at the
leading edge of the tip cross-section for configuration B. This location derives
from the coupling of bending and torsional loads applied on the wing exposed
to the free stream. The results are summarized in Table 5.

The maximum displacement increases and becomes more accurate as NEL

increases. Therefore a higher number of elements enhances the flexibility of
the structure. The trend is convergent for each adopted theory as reported in
Fig. 7a. In particular, when the theory is linear (EBBM, TBM and N = 1), the
results are not affected by NEL whereas for N > 1 the solution approaches a
reference value.

As far as the approximation order is concerned, the linear theories give very
similar results, which are slightly different in the third significant digit. The
absolute value of the gap among N ≥ 1 theories is more evident underlining
the importance of increasing N to reach convergent results. However, this gap
decreases in absolute value as the expansion order increases. Higher orders than
linear approximation yield a more flexible structure. It is interesting to note how
uzmax decreases when the theory changes from a linear to a parabolic form. The
main reason for this turnaround stands in Poisson’s locking correction adopted
only for N = 1 [8, 9].

Table 5 also shows the percentage error in computing the maximum displace-
ment for all the theories and a mesh of 40 elements with respect to the reference
Nastran solution. A linear static analysis (sol 101) is performed by Nastran. A
solid elements model with about 106 DOFs is used, whereas for the proposed
model the maximum number of DOFs involved is equal to 5445 (40 elements,
N = 4). The aerodynamic loads are placed as concentrated forces on the upper
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Table 6: Convergence
study: Effect of the num-
ber of B4 elements on
uz max [cm] for different
beam models. Configura-
tion C.

V∞ = 20 m/s α = 3 deg 4× 40 panels

NEL EBBM TBM N = 1 N = 2 N = 3 N = 4

2 9.4210 9.4216 9.4220 8.9471 8.9603 8.9615
5 9.4210 9.4216 9.4220 9.1999 9.2263 9.2291
10 9.4210 9.4216 9.4220 9.2718 9.3067 9.3108
20 9.4210 9.4216 9.4220 9.3036 9.3418 9.3466
40 9.4210 9.4216 9.4220 9.3186 9.3578 9.3628

+1.046% +1.052% +1.056% -0.053% +0.368 % +0.422 %

Nastran (solid - sol 101): 9.3235

Figure 8: Maximum
transverse displacement
uz max as a function of
the structural mesh and
the models involved for
tapered wings.
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 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 0  5  10  15  20  25  30  35  40

u z
 m

ax
  [

m
m

]
Number of elements  NEL

EBBM
TBM
N = 1
N = 2
N = 3
N = 4

surface of configuration B. An excellent agreement is obtained between Nastran
and the higher-order model’s results.

Analysis of the combined convergence is carried out also for configuration C
and the conclusions are analogous to the previous case, see Table 6. The free
stream velocity is 20 [m/s] in order to avoid large deflections. The convergent
trend of uzmax as NEL increases is shown in Fig. 7b and is very similar to that
obtained for configuration B.

As far as expansion order is concerned, the results highlight a similar behav-
ior. Nevertheless, by decreasing L/c̄ the use of higher-order theories becomes
more and more important. For configuration C less remarkable differences have
been found in the case N > 1 with respect to configuration B. Cubic and fourth-
order approximations differ in the fourth significant digit. Since the first-order
approximation matches the classical models, the shear effect and hence the lin-
ear terms of ux and uz for N = 1 can be neglected for this slender beam. It
should be noted that EBBM is stiffer than TBM: +0.111% for shorter configu-
ration B versus +0.006% for slender configuration C. On the contrary, EBBM
is more deformable than N = 4: -1.344% for shorter configuration B versus
-0.622% for slender configuration C. An excellent agreement with Nastran is
again obtained by higher-order models.

The fourth assessment continues focusing now on two tapered structures.
The first is configuration A, which is discretized by 4× 40 aerodynamic panels
and exposed to V∞ = 50 [m/s] with α = 3°. Table 7 summarizes the correspond-
ing results and Fig. 8a shows the trends as the number of elements changes for
each theory involved. For any mesh uzmax increases with N , to such an ex-
tent that no remarkable differences are detected for high-order expansion. As
will be clear in the following, this swept wing is subjected to a significant twist
of the cross-section. Bearing in mind that linear theories (EBBM, TBM, and
N = 1) are not able to handle this mechanical behavior, the Poisson’s locking
correction is not sufficient to make them effective in computing the maximum
displacement. On the contrary, the refined models approach Nastran results.

In relation to the numerical convergence, the trend is different with respect

Vol. 2, No. 2, pp. 53–78 ASDJournal



A. Varello, E. Carrera and L. Demasi
∣∣∣ 69

V∞ = 50 m/s α = 3 deg 4× 40 panels

NEL EBBM TBM N = 1 N = 2 N = 3 N = 4

2 4.2749 4.2829 4.2909 4.4309 4.9598 5.1036
5 3.1768 3.1842 3.1965 3.6408 3.8045 3.8858
10 3.0401 3.0473 3.0605 3.4701 3.5785 3.6316
20 3.0071 3.0144 3.0277 3.4097 3.4854 3.5377
40 2.9990 3.0062 3.0196 3.3920 3.4440 3.4802

-13.69% -13.49% -13.10% -2.383% -0.886% +0.155 %

Nastran (solid - sol 101): 3.4748

Table 7: Convergence
study: Effect of the num-
ber of B4 elements on
uz max [mm] for different
beam models. Configura-
tion A.

V∞ = 50 m/s α = 3 deg 4× 40 panels

NEL EBBM TBM N = 1 N = 2 N = 3 N = 4

2 3.4704 3.4732 3.4744 3.2120 3.2852 3.3446
5 2.5787 2.5812 2.5822 2.4893 2.5586 2.5777
10 2.4675 2.4699 2.4709 2.4065 2.4733 2.4849
20 2.4407 2.4431 2.4441 2.3885 2.4508 2.4629
40 2.4340 2.4365 2.4374 2.3848 2.4404 2.4539

-1.282% -1.180% -1.144% -3.277% -1.022% -0.474 %

Nastran (solid - sol 101): 2.4656

Table 8: Convergence
study: Effect of the num-
ber of B4 elements on
uz max [mm] for different
beam models. Configura-
tion D.

to configurations B and C, since the deflection decreases as NEL increases. By
discretizing the tapered wing with a coarse mesh, the elements close to the tip
have cross-sections with dimensions shorter than reality. This leads the analysis
to underestimate the moment of inertia and therefore structural stiffness too.
This is why the trends of uzmax versus NEL for EBBM, TBM, and N = 1
are no longer independent of NEL. In the case of a swept untapered wing,
such curves would have been as straight as for configurations B and C. Hence,
the taper ratio causes a remarkable difference on the maximum displacement
between NEL = 2 and NEL = 40: +42.5% for EBBM versus +46.6% for N = 4.

The fourth assessment completes the analysis of the structural method with a
further tapered configuration, named D. By using the same aerodynamic param-
eters and boundary conditions as those involved for wing A, Table 8 summarizes
the combined convergence of uzmax on N and NEL. The structural convergence
as N increases is guaranteed and the conclusions about Poisson’s locking correc-
tion formerly introduced are still valid. On the contrary, the difference between
theories is less evident for configuration D than for configuration A. This ap-
plies mainly because the torsion of the tip cross-section is less significant for the
unswept wing than the swept one. This makes the classical theories effective
at least in the computation of the maximum displacement compared to N = 4,
which offers the result closest to the Nastran solution.

Fig. 8b shows trends which in some respects are similar to Fig. 8a. They
share the deflection decrease as NEL increases, so confirming that the taper ra-
tio is the dominant parameter on the numerical convergence. As a consequence,
a notable difference between NEL = 2 and NEL = 40 appears again: +42.6% for
Euler-Bernoulli’s theory and +36.3% for fourth-order model. However, the con-
vergence on NEL is achieved, so confirming the method’s numerical consistency
for dihedral wings as well as straight, swept, and tapered ones.
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Table 9: Load cases
applied to the wing
configurations.

Load Case ID 1 2 3 4 5 6

Configuration B A A E E A, E, F
V∞ [m/s] 70 70 70 70 70 70
α [deg] 5 5 5 5 5 5
Force Pz [kN] -6.8 -7.2 -20 -7.2 -20 -
Position Pz

a 50% 50% 30% 50% 30% -
Twist Ty [kNm] - - -5, 0, 5 - 0, 3, 6 -
Position Ty

b - - 30% - 30% -

a
Position yP along the spanwise direction: yP /L

b
Position yT along the spanwise direction: yT /L

Figure 9: Comparison of
classical and higher-order
models for configuration
B. Load case 1.

Undeformed

EBBM :  Pz = - 6.8 kN 

N = 3  :  Pz = - 6.8 kN 

7.3 Analysis of Significant Load Cases

Previous sections have clearly proved the effectiveness of both the structural and
aerodynamic models. In this section, a combination of these two is applied to
analyze significant load cases, which are listed in Table 9. They would simulate
a number of flight conditions, by combining aerodynamic, bending and torsional
loadings together.

Load case 1 is a transverse force Pz applied to the straight wing B, which
is exposed to a free stream V∞ = 70 [m/s] with α = 5°. These values for
the aerodynamic parameters will remain unchanged for load cases 1-6. The
aerodynamic mesh has 4 × 40 VLM panels whereas 20 B4 elements discretize
the structure. Pz is placed at 50 % of the span and equally split upon the two
spars. It could simulate the effect of an inertial load along z axis due to wing
engines, missiles, nacelles, or drop tanks.

The aerodynamic load generates a combination of bending and torsional
stress. Pz has a non-negligible clockwise torsional effect since its application
point does not coincide with the cross-section’s center of twist. However, it
provides an overall reduction of the transverse displacement, which reaches its
maximum value at the leading edge of the tip cross-section. A comparison
between Euler-Bernoulli’s beam theory and the third-order model is shown in
Fig. 9 (the tridimensional deflections are drawn by means of a large scale factor
to clearly portray their differences). It is evident that the model N = 3 has the
capability to show the torsional effect, while EBBM turns out to be less effective
in this combined load case.

Load case 2 combines a transverse force Pz and an aerodynamic load on the
swept wing A. Because of the positive sweep angle, the whole structure would be
expected to undergo a clockwise rotation about y axis due to the aerodynamics.
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EBBM :  Pz = - 7.2 kN 

N = 3  :  Pz = - 7.2 kN 

Figure 10:

Tridimensional defor-
mation of configuration
A. Load case 2.

N = 3  :  Pz = - 20 kN , Ty =  - 5 kNm 

N = 3  :  Pz = - 20 kN , Ty =    0 kNm 
N = 3  :  Pz = - 20 kN , Ty = + 5 kNm 

EBBM :  Pz = - 20 kN , Ty =  - 5, 0, + 5 kNm 

Figure 11: Effect of
the variable torsional load
on configuration A. Load
case 3.

When Pz is also applied, it generates a counter-clockwise twist able to contrast
the aerodynamic effect. When Λ is positive, the trailing edge is more sensitive
to a bending load, even if the latter were placed at the airfoil’s center of twist.
In the case of a negative Λ, the same applies to the leading edge. The position
of Pz behind the cross-section’s center of twist gives an additional clockwise
torsional effect, which is especially evident at 50 % of the span. In Fig. 10 the
third-order model shows that this local twist impacts on the overall structure.
The limits of EBBM are again evident, even for a bending case.

In load case 3, a torsional load Ty is added to load case 2. Ty could sim-
ulate inertial loads along x axis due to wing engines, missiles, and drop tanks
located below the wing surface. The analysis of the swept wing A as the tor-
sion Ty increases is made again with a third-order model and its results are in
Fig. 11. The local deflection near the application points (yP = yT ) becomes
more evident as Ty increases, whereas uz decreases at the tip. In particular, the
twist warps the trailing more than the leading edge of each cross-section. On
the contrary, Euler-Bernoulli’s theory is again unable to detect any twist. The
figure underlines once more how N = 3 model is capable to evaluate different
flight conditions.

Further conclusions are obtained by considering the wing configuration named
with letter E. As far as load case 4 is concerned, the transverse force Pz re-
duces the transverse displacement but introduces two opposite twist effects. The

ASDJournal (2011) Vol. 2, No. 2, pp. 53–78



∣

∣

∣
72 Vortex Lattice Method Coupled with Advanced 1D Structural Models

Figure 12:

Tridimensional defor-
mation of configuration
E. Load case 4.

EBBM :  Pz = - 7.2 kN 

N = 3  :  Pz = - 7.2 kN 

Figure 13: Effect of
the variable torsional load
on configuration E. Load
case 5.

N = 3  :  Pz = - 20 kN , Ty = 0 kNm 

N = 3  :  Pz = - 20 kN , Ty = 3 kNm 

N = 3  :  Pz = - 20 kN , Ty = 6 kNm 

EBBM :  Pz = - 20 kN , Ty = 0, 3, 6 kNm 

application point behind the cross-section’s center of twist generates a counter-
clockwise rotation, whereas an opposite torsion is due to the negative sweep
angle. In conclusion, Fig. 12 displays the counter-clockwise twist of the overall
wing obtained by means of a higher-order model. EBBM does not detect the
proper deformation and uzmax is underestimated.

Load case 5 involves Pz and torsion Ty, which are both placed at 30 % of the
span of configuration E. Fig. 13 shows the increasing local effect on the most
stressed cross-section. When the twist is higher, the transverse displacement at
the tip increases for the forward swept wing. Such a behavior is opposite to the
swept configuration A. In the same manner, a positive Ty does not countervail
the typical torsion due to the aerodynamics when forward swept geometry is
involved. For the generic cross-section, now the realistic center of rotation seems
to be placed behind the center of twist. While for wing A the change of twist in
value mainly rotates the trailing edge, only slightly involving the leading edge,
wing E undergoes a notable variation in uz on the leading edge, too. Such a
point is presumably due to the negative sweep angle, which turns the leading
edge to the “weak side”. The discussion of results would not have been possibile
by relying on only classical beam models.

By considering the most constraining twist (Ty = 6 kNm) of load case 5,
the transverse shear stress τxz along the charged cross-section is investigated
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stress τxz on the deformed
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span). Load case 5.

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0  1  2  3  4  5

∆u
z 

 [m
m

]

y  [m]

EBBM :  Λ =  - 13.5°, 0°, 13.5°

N = 3 :  Λ = - 13.5°

N = 3 :  Λ = 0°

N = 3 :  Λ = 13.5°

Figure 15: Effect of
sweep angle on the tor-
sional response of con-
figurations A, E, and
F subjected to aerody-
namic pressure distribu-
tion. Load case 6.

with a third-order model. The distribution is presented in Fig. 14. Obviously,
Euler-Bernoulli’s beam theory fails to detect any transverse shear effect. It is
to be noticed that the linear and higher-order terms of ux and uz cannot be
neglected. In fact, the shear effects are remarkable in such a constraining load
case. In particular, the highest values of τxz are placed at the joint points
between the airfoil and the spar at 25% of the chord. Such a spar is highly
stressed, reaching both the maximum and minimum values. On the contrary,
the rear spar seems to not undergo high values of transverse shear stress. It
is to be noticed the high rate of stress placed at the trailing edge and slightly
below the leading edge. Fig. 14 illustrates how the proposed 1D model is able to
portray the cross-section’s deformation. The spar straining is drawn with a large
scale factor; however, it could be prevented by the introduction of transverse
ribs [19], which here are not taken into account.

Load case 6 involves neither bending nor torsional loadings. The purpose is
to analyze the effect of sweep angle on wings exposed to a free stream velocity
V∞ = 70 [m/s] with α = 5°. The unswept configuration F is considered and
compared to A and E, with Λ equal to 13.5° and−13.5°, respectively. This choice
is purpose-made, since the wings have all the same geometrical parameters with
the exception of sweep angle. The analysis investigates the structural torsion
along the spanwise direction due to the only aerodynamic pressure by means
of the quantity ∆uz. It is defined as the difference of uz between leading and
trailing edges. The simulation is performed for each case via EBBM and third-
order model and Fig. 15 shows the results.

At first glance, the twist is more significant when the sweep angle is high.
Nevertheless, the unswept wing also undergoes a twist, since the aerodynamic
load is a combination of bending and torsion. In particular, the rotation about
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Table 10: Comparison
of uz max [mm] for the
structural and aeroelas-
tic cases through different
beam models. Flat plate.

V∞ = 30 m/s α = 1 deg 10× 50 panels 20 B4 elements

EBBM TBM N = 3 N = 4 Nastran

Structural analysis 68.650 68.649 66.804 66.947 -
Aeroelastic analysis 68.611 68.611 73.241 73.397 73.731
% Difference −0.057 −0.055 +9.636 +9.635 -

DOFs 305 305 1830 2745 2135

y axis is positive and its maximum is not placed at the tip cross-section. As
expected and explained above, the rotation is positive for the forward swept
wing E and negative for the swept A. It should be noted that the corresponding
lines in Fig. 15 are not symmetrical with respect to the horizontal axis. Their
maximum absolute values are not at the same y coordinate and this means that
the shape of ∆uz depends on the sweep angle’s sign, too.

As expected, Euler-Bernoulli’s beam theory neglects any torsion and makes
no difference among wings. Instead, Fig. 15 could be very helpful to the design
and the evaluation of aeroelastic behavior of wings. Again, the capability of
higher-order models applied to unidimensional finite elements via the CUF is
proved.

7.4 Preliminary Results on Static Aeroelastic Response

A preliminary aeroelastic case is now considered. The static aeroelastic response
of a flat plate exposed to a free stream velocity V∞ = 30 [m/s] with α =1° is
investigated by solving the following aeroelastic system:

Kaeroelastic · q = LRHS (44)

For the sake of brevity, more details about the construction ofKaeroelastic are not
reported here but can be found in [18]. The flat plate has a thickness equal to 20
[mm], whereas its dimensions from a top view perspective are the same as those
for configuration B. The structural analysis is also carried out by solving Eq. 42
for different beam models. As reported in Table 10, the increasing expansion
order N enhances the gap between the structural and aeroelastic responses by
approaching Nastran results (sol 144) through a limited number of degrees of
freedom. Classical theories, EBBM and TBM, are unable to handle the proper
torsional behavior and then are ineffective especially when the aeroelastic effect
on the wing is relevant.

The effect of the free stream velocity on the maximum transverse displace-
ment at the tip cross-section is evaluated in Fig. 16. The simulation is performed
via a fourth-order approximation for both the structural and aeroelastic cases.
The aeroelastic contribution to the system stiffness results to be more evident
as V∞ increases in good agreement with Nastran. A N = 4 theory detects that
the increasing free stream velocity enhances the aeroelastic coupling effect on
the flat plate. For the sake of completeness, further static aeroelastic results on
a number of metallic and composite made wing configurations are presented in
[18].

8. Conclusions

This paper has proposed the coupling between the Vortex Lattice Method and a
refined one-dimensional structural model with in-plane warping and plate/shell
capabilities. The static response of wings with different geometries and cross-
sections (mainly thin-walled airfoil) has been analyzed. The aerodynamic, struc-
tural, and coupling models have been assessed based on available results from
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literature as well as on MSC Nastran code. The effectiveness of the coupling
has been proved for various load cases as well as its advantages with respect
to MSC Nastran model in terms of computational cost. Future work will ad-
dress an aeroelastic static and dynamic analysis (divergence and flutter) and its
application to wings made of composite material.

References

[1] S. Banerjee and M. Patil. Aeroelastic analysis of membrane wings.
In 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics,
and Materials Conference, AIAA Paper 2008-1812, Orlando, Florida, 7-10
April 2008.

[2] K.J. Bathe. Finite element procedure. Prentice hall, Upper Saddle River,
New Jersey, 1996.

[3] V.L. Berdichevsky, E. Armanios, and A. Badir. Theory of anisotropic thin-
walled closed-cross-section beams. Composites Engineering, 2(5-7):411–
432, 1992.

[4] R.L. Bisplinghoff, H. Ashley, and R.L. Halfman. Aeroelasticity. Addison-
Wesley, Cambridge, 1995.

[5] E. Carrera. A class of two dimensional theories for multilayered plates
analysis. Atti Accademia delle Scienze di Torino, Memorie Scienze Fisiche,
19-20:49–87, 1995.

[6] E. Carrera. Theories and finite elements for multilayered, anisotropic, com-
posite plates and shells. Archives of Computational Methods in Engineering,
9(2):87–140, 2002.

[7] E. Carrera. Theories and finite elements for multilayered plates and shells: a
unified compact formulation with numerical assessment and benchmarking.
Archives of Computational Methods in Engineering, 10(3):216–296, 2003.

[8] E. Carrera and S. Brischetto. Analysis of thickness locking in classi-
cal, refined and mixed multilayered plate theories. Composite Structures,
82(4):549–562, 2008.

[9] E. Carrera and S. Brischetto. Analysis of thickness locking in classical, re-
fined and mixed theories for layered shells. Composite Structures, 85(1):83–
90, 2008.

ASDJournal (2011) Vol. 2, No. 2, pp. 53–78



∣∣∣ 76 Vortex Lattice Method Coupled with Advanced 1D Structural Models

[10] E. Carrera, S. Brischetto, and A. Robaldo. Variable kinematic model for the
analysis of functionally graded material plates. AIAA Journal, 46:194–203,
2008.

[11] E. Carrera and G. Giunta. Refined beam theories based on a unified for-
mulation. International Journal of Applied Mechanics, 2(1):117–143, 2010.

[12] E. Carrera, G. Giunta, P. Nali, and M. Petrolo. Refined beam elements
with arbitrary cross-section geometries. Computers and Structures, 88(5–
6):283–293, 2010.

[13] E. Carrera and M. Petrolo. On the effectiveness of higher-order terms
in refined beam theories. Journal of Applied Mechanics, 78(2):021013.1–
021013.17, 2010.

[14] E. Carrera and M. Petrolo. Analysis of slender, thin walled,
composite made structures with refined 1d theories. In 52nd
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and
Materials Conference, AIAA Paper 2011-2168, Denver, CO, 4-7 April 2011.

[15] E. Carrera, M. Petrolo, and P. Nali. Unified formulation applied to free
vibrations finite element analysis of beams with arbitrary section. Shock
and Vibration, 18(3):485–502, 2011.

[16] E. Carrera, M. Petrolo, and A. Varello. Advanced beam formulations
for free vibration analysis of conventional and joined wings. Journal of
Aerospace Engineering, 2010. In press. DOI: 10.1061/(ASCE)AS.1943-
5525.0000130.

[17] E. Carrera, M. Petrolo, and E. Zappino. Performance of cuf approach to
analyze the structural behavior of slender bodies. Journal of Structural
Engineering, 2011. In press. DOI: 10.1061/(ASCE)ST.1943-541X.0000402.

[18] E. Carrera, A. Varello, and L. Demasi. A refined structural model for static
aeroelastic response and divergence of metallic and composite wings. 2011.
Submitted.

[19] E. Carrera, E. Zappino, and M. Petrolo. Analysis of thin-walled structures
with longitudinal and transversal stiffeners. 2011. Submitted.

[20] MacNeal-Schwendler corp. Interconnection of the structure with aerody-
namics. MSC.NASTRAN Theoretical Manual, Ver. 68, 1994.

[21] G.R. Cowper. The shear coefficient in Timoshenko’s beam theory. Journal
of Applied Mechanics, 33(2):335–340, 1966.

[22] L. Demasi. ∞3 hierarchy plate theories for thick and thin composite plates:
the generalized unified formulation. Composite Structures, 84(3):256–270,
2008.

[23] L. Demasi and E. Livne. Aeroelastic coupling of geometrically nonlinear
structures and linear unsteady aerodynamics: two formulations. Journal
of Fluids and Structures, 25:918–935, 2009.

[24] L. Demasi and E. Livne. Dynamic aeroelasticity of structural nonlinear con-
figurations using linear modally reduced aerodynamic generalized forces.
AIAA Journal, 47(1):71–90, 2009.

[25] P. Dinis, D. Camotim, and N. Silvestre. GBT formulation to analyse the
buckling behaviour of thin-walled members with arbitrarily ”branched”
open cross-sections. Thin-Walled Structures, 44(1):20–38, 2006.

[26] E.H. Dowell and K.C. Hall. Modeling of fluid-structure interaction. Annual
Review of Fluid Mechanics, 33:445–490, 2001.

Vol. 2, No. 2, pp. 53–78 ASDJournal



A. Varello, E. Carrera and L. Demasi
∣∣∣ 77

[27] R. El Fatmi. Non-uniform warping including the effects of torsion and shear
forces. Part I: A general beam theory. International Journal of Solids and
Structures, 44(18-19):5912–5929, 2007.

[28] R. El Fatmi. Non-uniform warping including the effects of torsion and
shear forces. Part II: Analytical and numerical applications. International
Journal of Solids and Structures, 44(18-19):5930–5952, 2007.

[29] L. Euler. De curvis elasticis. Bousquet, Lausanne and Geneva, 1744.

[30] C. Farhat, P. Geuzaine, and G. Brown. Application of a three-field nonlin-
ear fluid-structure formulation to the prediction of the aeroelastic param-
eters of an F-16 fighter. Computers & Fluids, 32(3):3–29, 2003.

[31] Y.C. Fung. An Introduction to the Theory of Aeroelasticity. Dover Publi-
cations, 2008.

[32] V. Giavotto, M. Borri, P. Mantegazza, G. L. Ghiringhelli, V. Caramaschi,
G. C. Maffioli, and F. Mussi. Anisotropic beam theory and applications.
Computers and Structures, 16:403–413, 1983.

[33] G.P. Guruswamy. A review of numerical fluids/structures interface methods
for computations using high-fidelity equations. Computers & Structures,
80(1):31–41, 2002.

[34] R. Harder and R.N. Desmarais. Interpolation using surface splines. Journal
of Aircraft, 9(2):189–192, 1972.

[35] R. Harder, R. MacNeal, and W. Rodden. A design for the incorporation of
aeroelastic capability into Nastran. NASA report, 1977. N71-33303.

[36] M.J. de C. Henshaw et al. Non-linear aeroelastic prediction for aircraft
applications. Progress in Aerospace Sciences, 43(4–6):65–137, 2007.

[37] D.H. Hodges and G.A. Pierce. Introduction to Structural Dynamics and
Aeroelasticity. Cambridge University Press, 2002.

[38] R. Jones. Mechanics of Composite Materials. Taylor & Francis, Philadel-
phia, 2nd edition, 1999.

[39] R. Kamakoti and W. Shyy. Fluid-structure interaction for aeroelastic ap-
plications. Progress in Aerospace Sciences, 40(8):535–558, 2004.

[40] K. Kapania and S. Raciti. Recent advances in analysis of laminated beams
and plates, part I: Shear effects and buckling. AIAA Journal, 27(7):923–
935, 1989.

[41] K. Kapania and S. Raciti. Recent advances in analysis of laminated beams
and plates, part II: Vibrations and wave propagation. AIAA Journal,
27(7):935–946, 1989.

[42] J. Katz and A. Plotkin. Low-Speed Aerodynamics. Cambridge University
Press, 2001.

[43] A.V. Krishna Murty. On the shear deformation theory for dynamic analysis
of beams. Journal of Sound and Vibration, 101(1):1–12, 1985.

[44] L. Librescu and O. Song. On the static aeroelastic tailoring of composite
aircraft swept wings modelled as thin-walled beam structures. Composites
Engineering, 2:497–512, 1992.

[45] I. Mechab, A. Tounsi, M.A. Benatta, and E.A. Adda Bedia. Deformation
of short composite beam using refined theories. J. Math. Anal. Appl.,
34(6):468–479, 2008.

ASDJournal (2011) Vol. 2, No. 2, pp. 53–78



∣∣∣ 78 Vortex Lattice Method Coupled with Advanced 1D Structural Models

[46] V.V. Novozhilov. Theory of elasticity. Pergamon Press, Oxford, 1961.

[47] B. Popescu and D.H. Hodges. On asymptotically correct Timoshenko-like
anisotropic beam theory. International Journal of Solids and Structures,
37:535–558, 2000.

[48] J.N. Reddy. Mechanics of laminated composite plates and shells. Theory
and Analysis. CRC Press, 2nd edition, 2004.

[49] W. Rodden, R. Harder, and D. Bellinger. Aeroelastic addiction to Nastran.
NASA contractor report, 1979. 3094.

[50] R. Schardt. Eine erweiterung der technischen biegetheorie zur berechnung
prismatischer faltwerke. Der Stahlbau, 35:161–171, 1966.

[51] R. Schardt. Generalized beam theory-an adequate method for coupled
stability problems. Thin-Walled Structures, 19:161–180, 1994.

[52] W. Shyy, H. Aono, S.K. Chimakurthi, P. Trizila, C.-K. Kang, C.E.S Cesnik,
and H. Liu. Recent progress in flapping wing aerodynamics and aeroelas-
ticity. Progress in Aerospace Sciences, 46(7):284–327, 2010.

[53] N. Silvestre. Second-order generalised beam theory for arbitrary orthotropic
materials. Thin-Walled Structures, 40(9):791–820, 2002.

[54] N. Silvestre and D. Camotim. First-order generalised beam theory for
arbitrary orthotropic materials. Thin-Walled Structures, 40(9):791–820,
2002.

[55] I.S. Sokolnikoff. Mathematical Theory of Elasticity. McGrw-Hill, 1956.

[56] S.P. Timoshenko and J.N. Goodier. Theory of elasticity. McGraw-Hill,
New York, 1970.

[57] A. Varello, L. Demasi, E. Carrera, and G. Giunta. An im-
proved beam formulation for aeroelastic applications. In 51st
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and
Materials Conference, AIAA Paper 2010-3032, Orlando, Florida, 12-15
April 2010.

[58] V.V. Volovoi, D.H. Hodges, V.L. Berdichevsky, and V.G. Sutyrin. Asymp-
totic theory for static behavior of elastic anisotropic I-beams. International
Journal of Solid Structures, 36(7):1017–1043, 1999.

[59] K. Washizu. Variational methods in elasticity and plasticity. Pergamon
Press, Oxford, 1968.

[60] J.R. Wright and J.E. Cooper. Introduction to Aircraft Aeroelasticity and
Loads. John Wiley & Sons, 2008.

[61] W. Yu and D.H. Hodges. Generalized Timoshenko theory of the variational
asymptotic beam sectional analysis. Journal of the American Helicopter
Society, 50(1):46–55, 2005.

[62] W. Yu, V.V. Volovoi, D.H. Hodges, and X. Hong. Validation of the
variational asymptotic beam sectional analysis (VABS). AIAA Journal,
40(10):2105–2113, 2002.

[63] Inc. ZONA Technology. Spline methods for spline matrix generation.
ZAERO Theoretical Manual, Ver. 7.1, 2004.

Vol. 2, No. 2, pp. 53–78 ASDJournal


	Introduction
	Preliminaries
	Refined Beam Theory
	Finite Element Formulation
	Structural and Aerodynamic Notations
	Aerodynamic Load Transfer
	Splining and Pseudo-Structural Points
	Steady Aerodynamic Forces

	Results and Discussion
	Aerodynamic Model Assessment
	Structural Model Assessment
	Analysis of Significant Load Cases
	Preliminary Results on Static Aeroelastic Response

	Conclusions

