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1. Introduction

In an earlier paper, a method called scaling analysis has been used to extract
useful and fundamental information from the unsteady transonic small distur-
bance potential flow model [1]. Here the same methodology is applied to the
Navier-Stokes equations. Scaling analysis has also been used for a variety of
nonlinear dynamics models in aeroelasticity including the modeling of struc-
tural nonlinearities [2, 3, 4] as well as in the field of thermodynamics and heat
transfer [5]. In scaling analysis one does not seek to find a solution to the mathe-
matical model in the conventional sense, but rather to make order of magnitude
estimates for the likely outcome of computational solutions. The estimates are
made using analytical techniques which do not require any substantial numerical
effort. Their purpose and advantage is to provide a benchmark for the expected
results of computational studies and also to estimate the relative importance of
various effects that could (or could not) be included in theoretical models.

2. The Navier-Stokes Equations

Consider the vector momentum equation for a fluid described by the Navier-
Stoke equations as follows. For our purposes here, it is sufficient to consider a
two-dimensional flow.

∂v

∂t
+ (v ·∇)v = −1

ρ
∇p+

µ

ρ
∇2v (1)

More specifically consider the streamwise scalar component of this equation
where x and y are the usual cartesian coordinates.
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The various terms in Eq. 2 are numbered (a) to (f).
Scaling analysis has also been applied to the transverse scalar component

of Eq. 1. However the outcome is simply to reproduce the known results of
boundary layer theory. See the appendix. For our purposes it is assumed that
the density can be estimated to be its free stream value or if the reader prefers
the flow is assumed to be one of constant density. As will become clear, this
estimate for the density is sufficient for the present scaling analysis even in
compressible flow. Thus, the density ρ and the streamwise scalar component of
the flow velocity u, may be expressed as follows.

u = U∞ + û and ρ = ρ∞ (3)

where U∞ is the free stream velocity and û is a (small or large) perturbation.
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3. Scaling Analysis

Now to begin scaling analysis per se, the spatial and time derivatives are as-
sumed to be of the following order where D is a characteristic length in the
streamwise direction, λ is a characteristic length in the transverse direction and
ω is a characteristic frequency of unsteady oscillations in the flow. D may be
typically the chord of an airfoil or wing and ω may be prescribed or determined
as an outcome of the scaling analysis depending on the physical phenomena of
interest. λ is usually found as an outcome of the scaling analysis.

∂

∂x
∼ 1

D
,

∂

∂x
∼ ω, ∂

∂y
∼ 1

λ
(4)

Scaling analysis is performed by asking the question: how do the several
terms in the mathematical model (here the Navier-Stokes equations and more
particularly Eq. 2) balance? By balancing it is meant that the two terms are
of the same order of magnitude and one may not be neglected relative to the
other. If two terms do not balance, then one may be neglected compared to the
other.

3.1 Balancing terms (a) and (b)

So, for example, if one requires that terms (a) and (b) balance in Eq. 2, then

ωû ∼ U∞
û

D
−→ ωD

U∞
∼ 1 (5)

Now how does one interpret Eq. 5? First of all Eq. 5 agrees with a wide range
of experimental evidence including the classical example of the oscillating flow
in the wake behind a blunt body (Von Karman vortex street) as well as more
recent results for transonic buffeting flows. Conversely if one accepts Eq. 5 as
a result of experiment it tells us that terms (a) and (b) balance or are of equal
importance for such flows. Of course Eq. 5 also allows one to determine ω given
D or vice versa and this well known result has been useful to engineers and
scientists for many years.

3.2 Balancing terms (b) and (c)

From this balancing it is determined that

U∞
û

D
∼ v̂ û

λ
−→ v̂

U∞
∼ λ

D
(6)

But recall λ is not yet known and is yet to be determined.

3.3 Balancing terms (b) and (e)

ρ∞U∞
û

D
∼ µ û

D2
−→ Re ≡ ρ∞U∞D

µ
∼ 1 (7)

The interpretation of this result is that if the Reynolds number, Re, is of order
one, then terms (b) and (e) balance and both are equally important in the
theoretical model. However if Re is much greater than one, then term (b) is
much greater than (e) and the latter may be neglected. Of course it is the latter
case that is most interest in aerospace applications, so consider this case further.

3.4 Balancing terms (b) and (f)

From this balancing one determines that

ρ∞U∞
û

D
∼ µ û

λ2
(8)
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and “solving” Eq. 8 one determines that

λ

D
∼ 1√

Re
(9)

Note also that Eq. 9 gives the desired estimate for λ. For Re � 1, λ/D � 1
and Eq. 9 determines λ for Re� 1!

Again it should be emphasized that Eq. 8 and Eq. 9 are order of magnitude
estimates rather than conventional equations per se. Note that if Re is much
greater than one then λ is much less D.

3.5 Balancing terms (b) and (d)

From this one determines that

ρ∞U∞
û

D
∼ p

D
(10)

But how to estimate û? Returning to Eq. 3 and considering term (b), it is
clear that when the flow oscillates in a nonlinear limit cycle oscillation (in the
absence of any structural body motion)

û ∼ U∞ (11)

when the two components of term (b) are comparable, i.e.

(U∞ + û)
∂û

∂x
= U∞

∂û

∂x
+ û

∂û

∂x
(12)

are comparable. Using Eq. 12 in Eq. 11, then

p̂ ∼ ρ∞U2
∞ (13)

and thus

CL ∼
2p̂D

ρ∞U2
∞D

∼ 1 (14)

Note that Eq. 14 is a prediction and that factors of 2 are not retained in an
order of magnitude analysis, i.e. scaling analysis. That is, it is expected that a
computational solution to the Navier-Stokes equations will give a lift coefficient
for the oscillating lift on a bluff body of order one. In fact this is what is found
from a computational fluid dynamics solution, see [6]. This is also the order of
magnitude of the oscillating lift found in transonic buffeting flows [7].

3.6 Oscillating Bodies in a Flowing Fluid

Another prediction of scaling analysis is an order of magnitude estimate of the
amplitude of an oscillating body or pitching that will induce nonlinear dynamic
effects when the body is placed in a flowing fluid. The body may have prescribed
motion or it may freely interact with the flow such that a self excited nonlinear
oscillation (limit cycle oscillation) of the body interacting with the fluid occurs.

Consider an oscillating body with frequency ω and deflection amplitude A.
Thus the body (transverse) velocity w, will be of order

w ∼ ωA (15)

Analogously for a pitching airfoil.

w ∼ U∞α (16)

The fluid boundary condition requires that the fluid transverse velocity v be
equal to the body transverse velocity w. Recalling that the Strouhal number
is of order one, see Eq. 5, this implies that the direct and convective time
derivative terms in the boundary condition are of the same order. Thus

v̂ ∼ w (17)
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3.7 Bluff Body Motion

Now using Eq. 6, 15 and 17, one can predict the order of magnitude of how
large the body motion must be to observe nonlinear dynamic effects in the fluid
oscillations due to body motion.

ωA ∼ U∞
λ

D
∼ U∞

1√
Re

(18)

and thus
A

D
∼ U∞

ωD
√
Re

(19)

Using Eq. 5
A

D
∼ 1√

Re
∼ 1

10
for Re ∼ 100 (20)

which agrees with experiment for the Von Karman vortex street and its inter-
action with an oscillating body [6]. Eq. 20 actually offers two predictions. It
is an order of magnitude estimate of a) the amplitude the body must move to
“lock in” the fluid oscillation frequency to the frequency of the body undergoing
prescribed motion and b) also the amplitude of the self excited limit cycle oscil-
lation when the body is free to move. Again see [6]. Also see the recent computer
simulations of Raveh [7] for lock in and LCO in transonic buffeting flows. These
computational results are also in agreement with the current scaling analysis
estimates.

3.8 Pitching Airfoil or Wing

Now using Eq. 6, 15 and 16, one can predict the order of magnitude of how large
the airfoil motion must be for nonlinear dynamics effects in the fluid oscillations
to be observed.

v̂ ∼ U∞
1√
Re

(21)

For the example of interest here Eq. 21 may be expressed in terms of a non-
dimensional acceleration as follows.

v̂ω

g
∼ U∞ω

g
√
Re

(22)

To compare this result with experiment, we consider the limit cycle oscillations
(LCO) of the F-16 aircraft. We choose typical values as follows: free stream
velocity of 1000 ft/sec, frequency of 8 Hz and Re of 10,000,000. The non-
dimensional acceleration order of magnitude estimate of 0.5 from Eq. 22 is in
good correspondence with measured values from flight tests [8].

4. Conclusions

Scaling analysis has been applied to the Navier-Stokes equations to obtain order
of magnitude estimates for various quantities of physical interest. This extends
earlier scaling analysis work on the transonic potential flow equations. Estimates
are obtained for the Strouhal number of oscillating flows, the magnitude of
oscillating lift on a body in a vortex street or buffeting flow, and the amplitude
that a body must oscillate to provide a qualitative change in such flows or the
amplitude of oscillation of a body that will result from the limit cycle oscillations
that may occur due to fluid nonlinearities. Also well known results such as
the relative importance of various terms in the governing Navier-Stokes are
reproduced by scaling analysis as well. Finally the present results have been
extended formally to compressible flows which support the results of this paper
as well as give additional results. These results will be reported separately.
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A Appendix

In this appendix scaling analysis is applied to the transverse component of Eq.
1 and it is seen the result for large Re is the same as that of classical boundary
layer theory. The scalar component of Eq. 1 is as follows.

ρ

[
∂v

∂t︸︷︷︸
(a∗)

+u
∂v

∂x︸︷︷︸
(b∗)

+ v
∂v

∂y︸︷︷︸
(c∗)

]
= −∂p

∂y︸ ︷︷ ︸
(d∗)

+µ

[
∂2v

∂x2︸︷︷︸
(e∗)

+
∂2v

∂y2︸︷︷︸
(f∗)

]
(23)

The terms of interest are labeled (a*) to (f*)

A1 Balancing terms (a*) and (b*)

ωv̂ ∼ U∞
v̂

D
−→ ωD

U∞
∼ 1 (24)

which is the same as Eq. 5 of course.

A2 Balancing terms (a*) and (c*)

ωv̂ ∼ v̂

λ
v̂ or

ωD

U∞
∼ v̂D

U∞λ
or

v̂

U∞
∼ λ

D
(25)

which is the same as Eq. 6 of course.

A3 Balancing terms (c*) and (f*)

ρ∞v̂
v̂

λ
∼ µ v̂

λ2
or

v̂

U∞
∼ µ

ρ∞U∞λ
∼ D

λ

1

Re
(26)

Using Eq. 6 or 25, Eq. 26 reproduces Eq. 9.

A4 Balancing terms (d*) and (f*)

p̂

λ
∼ µ v̂

λ2
or p̂ ∼ µ v̂

λ
or p̂ ∼ ρ∞U∞

µ

ρ∞U∞λ

v̂

U∞
(27)

and using Eq. 6 and 9 for large Re one obtains

p̂ ∼ ρ∞U∞
µ

ρ∞U∞D

D

λ

v̂

U∞
or p̂ ∼ ρ∞U∞

µ

ρ∞U∞D
(28)

But recalling Eq. 13, Eq. 28 shows that term (f*) may be neglected compared
to (d*) and thus the transverse gradient of pressure may be set to zero, i.e.
scaling analysis has reproduced the classical boundary layer result. Note that
term (e*) is clearly small compared to term (f*).
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