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Abstract
In this paper results of various analyses establish the following:

• The mathematical and physical similarities and differences between linear vis-
coelastic torsional divergence and column creep buckling are determined. In
each case instabilities take place under constant loads at critical times.

• The existence of a material dependent load threshold below which only stable
configurations are possible.

• Under static loads when the time dependence of the motion is solely material
property dependent, the inclusion of inertia terms in the governing relations
radically alters the type of motion and instability occurrences.

• Separate analyses based on material property considerations lead to failures and
failure times distinct from those associated with torsional and buckling insta-
bilities. Viscoelastic materials exhibit degradations of relaxation moduli and
failure stresses with time. Consequently, since applied moments and deflections
increase in time due to creep and failure stresses decrease, it is only a matter of
time before either creep buckling or material failures will occur.

1. Introduction

The linear viscoelastic problems of column buckling and of lifting surface tor-
sional divergence are strikingly similar from mathematical, physical and concep-
tual points of view and are analyzed in tandem. Considerably more literature
is available on either elastic and viscoelastic column buckling than there is on
its counterpart of torsional divergence. Consequently, columns will be primarily
treated here and divergence will be analyzed by analogy.

In the elastic static buckling and torsional divergence cases, instability is
indicated by proper interpretations of eigenvalues. Viscoelastic phenomena are
inherently time dependent and one must seek critical times where instabilities
begin to manifest themselves. A through understanding of elastic phenomena
and their impact on viscoelastic action is necessary. Such an abbreviated treat-
ment maybe found in Section 2.1.

In this paper, dynamic loading conditions and responses are formulated and
investigated to determine their influences on creep buckling/torsional instabil-
ity conditions of linear viscoelastic column/wing deterministic or probabilistic
survival times. It also shown that viscoelastic static or dynamic column creep
buckling and torsional divergence analyses are subject to additional load con-
straints, indicating that there is a threshold below which columns and wings
will remain stable indefinitely, unless material failures take place.

It must, of course, be remembered that the present analysis is specific to
linear small deformation viscoelastic columns and/or lifting surfaces. Although
only structural columns and wings are considered here, it is important to note
that opposite to elastic materials on the viscoelastic energy spectrum are viscous
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∣∣∣ 2 Dynamic torsional divergence and creep buckling

Table 1: Role of lateral
disturbance force ∆F Column Modulus Apply ∆F

Elastic, static [25] Young’s Any order

Plastic, static [104] Tangent After P

Plastic, static [92] Secant Before P

Viscoelastic, static [33], [73] Relaxation Never

Elastic, dynamic [60], [61] Young’s Before P

Viscoelastic, dynamic Relaxation Never
current paper

fluids where in Refs. [14] and [15] the nonlinear creep buckling of fluid columns
and jets have been investigated.

Other nonlinear contributions due to large deformations, material proper-
ties and/or follower loads [8], [44], [45], [50], [66], [102], [103], [112], are not
treated here in order to isolate the influence of material properties and inertia
contributions. Nor are structural control considerations included in the analy-
sis, which would further delay creep instabilities1 and/or material failures. See
[3], [4], [47], and [111].

2. Analysis

2.1 Elastic, plastic and viscoelastic stability criteria

Static elastic column buckling theory is well established based on the [25] for-
mulation. Euler’s model postulates a centrally loaded, perfectly straight, ho-
mogeneous, isotropic, linear elastic column. Under these stipulated conditions
it is necessary to apply and remove infinitesimal lateral disturbances in order
to investigate the stability of the bent column forms, which occur at eigen-
values of the applied load, i.e., the Euler loads. Since elastic materials are
conservative the order, manner and duration of static load applications do
not influence these eigenvalues. In non-conservative material systems with
plastic behavior, however, the lateral disturbance application sequence is of
paramount importance as it leads to either reduced modulus [92] or tangent
modulus [24], [104] theories depending on the order of application of the lat-
eral disturbance and the axial compressive load. (See Table 1.) The texts
[1], [2], [10], [20], [26], [29], [65], [66], [71], [72] and [95] among others, contain
detailed expositions of elastic and inelastic buckling. Ref. [23] treats deter-
ministic and stochastic stability of elastic columns, plates and shells, while in
[30] Lyapunov dynamic stability criteria for plates are examined.

Extensive data bases of viscoelastic properties for distinct materials may
be found in [64], [69] and [81] which clearly show the dissipative nature of all
viscoelastic materials. Additionally, viscoelastic column deflections are a series
of successive stable bent forms in time until either creep buckling or material
failure takes place. Since the material is non-conservative through its inherent
time dependent energy dissipation, the elastic Euler model of lateral disturbance
applications is neither applicable nor permissible. Continuous bending in time

1The generic terms stability/instability refer to columns or lifting surfaces or both.

Vol. 3, No. 1, pp. 1–37 ASDJournal



Hilton
∣∣∣ 3

must, therefore, be achieved through modeling of real column conditions, such
as eccentric loads or the inclusion of initial imperfections or both.

Classical elastic and viscoelastic analytical buckling and torsional divergence
instability definitions are expressed by
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

elastic



column =⇒ lim
P→PE

[
we(P ) or ∂we(P )

∂P

]
→ ∞

buckling

torsional =⇒ lim
V→V eD

[
θe(V ) or ∂θe(V )

∂V

]
→ ∞

divergence

viscoelastic



creep =⇒ lim
t→tBcr

[
w(t) or ∂w(t)

∂t

]
→ ∞

buckling (P < PE)

torsional =⇒ lim
t→tDcr

[
θ(t) or ∂θ(t)

∂t

]
→ ∞

divergence (V < V eD)

(1)

with the Euler load PE = Cπ2E0/L
2 and where the end fixity coefficient C values

are dictated by the column boundary conditions.
In Refs. [33], [37], [73] and [67] it is shown that for quasi-static linear vis-

coelastic columns no finite critical times tcr exist for 0 < P < PE , where
PE is the Euler load for an equivalent elastic column. However, experimen-
tal evidence indicates that real viscoelastic columns buckle at a finite time
[2], [29], [31], [63]. In the absence of analytical results indicating tcr <∞ for lin-
ear viscoelastic columns, finite ultimate times have been formulated in [33] based
on time dependent material failure conditions prescribed by the [91] interaction
curves. Subsequently, in [44] and [46] probabilistic delamination buckling fail-
ures have been analyzed based on the more general [43] invariant failure surface
criterion in order to establish survival times based on viscoelastic material fail-
ures rather than stability considerations. A different criterion based on finite
creep strains has also been proposed in [28]. Additionally, even nonlinear vis-
coelastic column models do not necessarily achieve finite tcr times as defined by
Eqs. (1) under some circumstances [35]. Torsional creep divergence problems of
viscoelastic lifting surfaces obey the same phenomenological and mathematical
principles as does creep buckling of viscoelastic columns [34], [36], [49]. In par-
ticular, it has been demonstrated that the inclusion of inertia terms, at either
small or large relaxation times, in the torsional governing equations significantly
alters both deflection responses and stability considerations. In [59], [60] and
[61] extensive analyses of dynamic effects on elastic column buckling has been
presented and it is concluded that their effects are indeed significant. Vibration
of elastic columns under time dependent loads with static Euler instability has
been investigated in [11] and [12].

Viscoelastic quasi-static creep buckling of more complex systems, such as
composites, have been studied in [107] (laminated columns), [108] (laminated
plates), [46] (static stochastic column delaminations), [5] piezoelectric column
control) and [45] (follower loads). Stochastic conditions manifest themselves
due to the uncertainties of constitutive relations [39] (geometries, temperatures2

applied loads and failure conditions [43], [84], [85], [105].
2For a bibliography of random temperature effects on structures and materials, see [39].
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∣∣∣ 4 Dynamic torsional divergence and creep buckling

Table 2: Column and
wing coordinates Item x1 -direction x2-direction x3-direction

column longitudinal neutral axis (NA) normal to NA

wing span chord at zero normal to chord at
angle of attack zero angle of attack

Elastic torsional divergence is extensively treated in Refs. [9], [21], [22], [57],
[89], and [109]. The governing ODEs in time are identical, except for coefficient
values, to the governing column ODEs and consequently result in similar eigen-
value stability considerations. One minor exception is the usual presence of a
built-in rigid body of attack which removes the necessity of the equivalent ∆F
torque to initiate torsional deflections.

The aero-viscoelasticity literature is considerably more sparse, however [54],
[55], [78], [79] and [80] carry a considerable number of references. The quasi-
static torsional divergence problem was first formulated in [36].

2.2 Generalized viscoelastic formulations

In a Cartesian coordinate system, x = {xi} with i = 1, 2, 3, consider a linear,
isothermal, homogeneous and prismatic wing or column of length L and with an
initial imperfection θ0(x1) and w0(x1) respectively and defined by the truncated
series when R <∞ and by a Fourier series for R =∞. θ0(x1)

w0(x1)

 =
R∑
r=1

 θ0
r

wor

 sin
(r π x1

L

)
1 ≤ R ≤ ∞ (2)

The coordinate systems are defined in Table 2. The 1–D homogeneous viscoelas-
tic isothermal constitutive relations are given by

σ11(x1, t) = E0

t∫
−∞

E(t− t′) ∂ε11(x1, t
′)

∂t′
dt′ = E0

t∫
−∞

E∗(t− t′) ε11(x1, t
′) dt′

(3)
and

ε11(x1, t) = C0

t∫
−∞

C(t− t′) ∂σ11(x1, t
′)

∂t′
dt′ = C0

t∫
−∞

C∗(t− t′) σ11(x1, t
′) dt′

(4)

where E∗(t) = ∂E(t)
∂t

, C∗(t) = ∂C(t)
∂t

, with E0 and C0 are respectively the
initial elastic modulus and compliance, E(t) the relaxation modulus and C(t)
the creep compliance. The latter are related to each other through their Fourier
transforms (FT) by

E∗(ω) = 1
C∗(ω)

= ı ω E(ω) = 1
ı ω C(ω)

(5)

For viscoelastic materials with initial elastic conditions (ICs) εij(x, 0) =
εEij(x, 0), there are two classes depending on the presence of E∞, the fully relaxed
modulus. The normalized relaxation modulus w.r.t. E0 is defined by Prony
series as [87]

Vol. 3, No. 1, pp. 1–37 ASDJournal
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E(t) =



Class I materials :
N∑
n=1

En exp
(
− t

τn

)
, lim

t→∞
ε(t) =∞,

N∑
n=1

En = 1,

E∞ = 0

Class II materials :

E∞ +
N∑
n=1

En exp
(
− t

τn

)
, lim

t→∞
ε(t) <∞, E∞ +

N∑
n=1

En = 1

(6)

and where En, E∞, τn andN ≤ ∞ are viscoelastic material property parameters
and E0is the instantaneous (elastic) modulus.

The four possible classes of viscoelastic behavior based on initial and long
time responses are shown Table 3. Classes III and IV describe fluid behavior
with εE(x, 0) = 0 and do not apply to the present column or divergence problem
formulations (See Table 3).

The governing relations for isothermal isotropic homogeneous prismatic con-
figurations are

column creep buckling (P or P (t) < PE) =⇒

m
∂2w(x1, t)

∂t2︸ ︷︷ ︸
inertia force (T1w)

+ I

t∫
−∞

E(t− t′)∂
5w(x1, t

′)
∂x4

1 ∂t
′ dt′

︸ ︷︷ ︸
load due to viscoelastic

internal bending moment (T2w)

=

P (t) ∂
2

∂x2
1

w(x1, t)−

initial
imperfection︷ ︸︸ ︷
w0(x1)


︸ ︷︷ ︸

load due to applied
external bending moment (T3w)

(7a)

lifting surface creep torsional divergence (V or V (t) < V eD) =⇒

IP
∂2θ(x1, t)

∂t2︸ ︷︷ ︸
rotational

inertia (T1θ)

+ J

t∫
−∞

G(t− t′)∂
3θ(x1, t

′)
∂x2

1 ∂t
′ dt′

︸ ︷︷ ︸
torsional rigidity (T2θ)

=

ρC` c
2 V (t)2

2

 θ(x1, t)︸ ︷︷ ︸
flexible body
contribution

−

initial
twist︷ ︸︸ ︷
θ0(x1)−

angle
of zero

lift︷ ︸︸ ︷
α0(x1) +

trim
angle︷ ︸︸ ︷

αr(x1, t)︸ ︷︷ ︸
= θr(x1,t)

rigid body contribution


︸ ︷︷ ︸

applied aerodynamic torque (T3θ)

(7b)

with solutions

w(x1, t) =
Rw∑
n=1

Wn(t) fnw(x1) 1 ≤ n ≤ Rw ≤ ∞ (8a)

θ(x1, t) =
Rw∑
n=1

Θn(t) fnθ(x1) 1 ≤ n ≤ Rw ≤ ∞ (8b)

ASDJournal (2013) Vol. 3, No. 1, pp. 1–37



∣∣∣ 6 Dynamic torsional divergence and creep buckling

Table 3: Classification
of viscoelastic behavior Class Initial Long Moduli Material

Strain Time Type
Strain

I εE(x, 0) ∞ E0 > 0, E∞ = 0 solids

II εE(x, 0) <∞ E0 > 0, E∞ > 0 solids

III 0 ∞ E0 = 0, E∞ = 0 fluids

IV 0 <∞ E0 = 0, E∞ > 0 fluids

Note that the initial imperfection twist angle θ0(x1), unlike the initial col-
umn imperfection w(x1), may be zero provided either α0 or αr or both have
non-zero values. The flight velocity V and trim angle αr may vary with time
due to maneuvers, buildups, landings/takeoffs, etc., as shown in [78]. Concep-
tually, this is equivalent to time dependent axial loads P on the column and
in both cases leads to integral-partial-differential-equations (IPDEs) with time
dependent (variable) coefficients. For equivalent elastic configurations, the time
integrals and derivatives in terms T2 are removed and PDEs result. Furthermore,
in the legacy problems where inertia terms T1 are neglected and for symmetric
column BCs where spatial derivatives of order 2 are sufficient, Eqs. (7) are of
the same order. Generally, except for the flag pole column, the BCs for columns
will be distinct from those for the lifting surfaces. Such dissimilar conditions,
however, do not negate the general similar behavior of buckling and torsional
divergence phenomena.

The RHS of Eqs. (7) can be expressed in general terms as

{F (t)} =


P (t) < PE

ρC` c
2

2 [V (t)]2 , V (t) < V eD

 (9)

Substitution of Eqs. (8) into the governing relations (7) or the application
of Galerkin’s method to the latter, reduces these two equations in both cases to
time domain universal linear governing relations of the form

Amn2
∂2umn(t)

∂t2
+ Amn1

t∫
−∞

D(t− t′)∂umn(t′)
∂t′

dt′ + Amn0 F (t) umn(t) =

Amn00 F (t) 1 ≤ m ≤ 2 and 1 ≤ n ≤ Rw ≤ ∞ (10)

with

D(t) =

 E(t)

G(t)

 and

 u1n(t)

u2n(t)

 =

 Wn(t)

Θn(t)


1 ≤ n ≤ Rw ≤ ∞ (11)

and where the Anj may have distinct values depending on which of the two
computational methods for removing the spatial dependence are used. Both
the column and the torsional divergence phenomenon are closed loop systems
subject to instabilities based on either the axial critical load P (t) or the velocity
V (t). The stability criteria are displayed in Eqs. (1).

For simulations to be truly physically representative of real elastic or vis-
coelastic columns, the load P (t) cannot be imposed “instantaneously” within

Vol. 3, No. 1, pp. 1–37 ASDJournal
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Time Definition Eq. Criterion Fig.

t0 time at which relaxation (1) E(t) = E0 3
begins t0 ≈ 10−3 for 0 ≤ t ≤ t0

t1 time when load stabilizes (12) P (t) ≤ P0 1
at its maximum P0, t1 ≈ 10−4 for 0 ≤ t ≤ t1

tR time to reach fully relaxed (3) E(t) = E∞ 3
modulus E∞, tR ≈ 10

t2 time for sound wave to travel tL = L/c0
length of column for t ≥ tR

to x = L, t2 ≈ 10−2

Table 4: List of charac-
teristic times

the present dynamic time frame, since the loading sequence significantly influ-
ences dynamic displacement responses particularly in early times. Moreover,
P (t) must be modeled with the following conditions in mind. In order to prop-
erly reflect initial (t < t0) elastic column equivalences (Figs. 1, 10 - 22), the
time t1 needed to stabilize P (t) must be shorter than the time t0 > 0 when
relaxation begins. Therefore, the following conditions must be imposed on P (t)
during the loading cycle to model physical loading realities [8]

P (t) =

 P0 FP (t) 0 ≤ t ≤ t1

P0 t ≥ t1
(12)

with
FP (0) = 0, FP (t1) = 1, dFP (0)

dt
= dFP (t1)

dt
= 0 (13)

Some possible forms of the loading function FP (t) are (See Fig. 1 with k = 2
and l = 4)

FP (t) =



Ak

(
t

t1

)k
+ Al

(
t

t1

)l
k, l ≥ 2 Load A

1
2

[
1 − cos

(
π t

t1

)]
Load B

H(t) Load C

t

t1
Load D


0 ≤ t ≤ t1 < t0 (14)

where the exponents k and l need not necessarily be integers. Other simi-
lar loading patterns can be readily constructed. Load C, while mathemati-
cally attractive, is physically unattainable as it fails to meet the conditions
of Eqs. (13) . Load D has some characteristics of achieving an acceptable
loading time ramp rise, but does not satisfy the zero slope requirements of
Eqs. (13). Representative time values related to loading patterns and relax-
ation functions are displayed in Table 4. Similar functions can be generated for
the flight velocities V (t) as demonstrated in [78].

A solution corresponding to the initial imperfection of Eq. (2) is given by

w(x1, t) =
R∑
r=1

Wr(t) sin
(r π x1

L

)
(15)

ASDJournal (2013) Vol. 3, No. 1, pp. 1–37



∣∣∣ 8 Dynamic torsional divergence and creep buckling

From Eq. (7a) one then obtains the governing relations for each amplitudeWr(t)
as

Ẅr(t) + λ4
r

t∫
−∞

E(t− t′) Ẇr(t′) dt′ − Dlf
r (t)

[
Wr(t)− w0

r

]
= 0

r = 1, 2, 3, · · · , R (16)

with P = P (t) defined by Eq. (12), and with

λ4
r = E0 I

ρ

(r π
L

)4
= r2 P ∗r (17)

Dlf
r (t) =

 e P ∗r FP (t) 0 ≤ t ≤ t1

e P ∗r t ≥ t1
(18)

where

P ∗r = PE
ρ

(r π
L

)2
and PE = E0 I π

2

L2 with P0 = e PE 0 < e < 1

(19)
With the Dlf

r (t) loading function present in Eq. (16) the integral–differential
relation cannot be solved by integral transforms and must be solved directly
in the time space. However, a Laplace transform (LT) can be applied to
Eq. (16) with Dlf

r (t) ≈ Dlf
r∞, or more precisely lim

t→∞
Dlf
r (t)→ Dlf

r∞, in order to
estimate long time behavior, which results in

dynamic viscoelastic =⇒ W r(p) = λ4
r E(p)wor

p
[
p2 + λ4

r E(p)−Dlf
r∞

] (20)

where F (p) =
∞∫
0

exp(−p t) F (t) dt is the LT of F (t). As seen in Appendix A

these results are exact for Load C of Eqs. (14).
Similarly, the LT of the dynamic elastic solution becomes

dynamic elastic =⇒ W
e

r(p) = λ4
r w

o
r

p
[
p2 + λ4

r −D
lf
r∞

] (21)

whereas the corresponding quasi-static solution transforms are given by

quasi− static viscoelastic =⇒ W
qs

r (p) = λ4
r E(p)wor

p
[
λ4
r E(p)−Dlf

r∞

] (22)

and
quasi− static elastic =⇒ W

qse

r (p) = λ4
r w

o
r

p
[
λ4
r −D

lf
r∞

] (23)

Stability estimates at t =∞ may be realized through the application the LT
limit theorem to Eqs. (20) and (22), such that for the quasi-static viscoelastic
column response one obtains

lim
t→∞

Wr(t) = lim
p→0
{pW r(p)} −→

λ4
r E∞ wor

λ4
r E∞ −D

lf
r∞

= wor

1− e

r2E∞

<∞

if r2E∞ 6= e < 1 (24)

with
Dlf
r∞ = lim

t→∞
Dlf
r (t) = lim

p→0
{pDlf

r (p)} −→ e P ∗r (25)
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Note that Dlf
r∞ is independent of the ramp loading function as it represents a

long time (t � t1) steady state load. An exact formulation of Dlf
r (t) for the

various loading functions of Eqs. (14) is given in Appendix A with the results
represented by Eqs. (70).

The equivalent static or dynamic elastic solutions at t→∞ are

lim
t→∞

W e
r (t) = lim

p→0
{pW e

r(p)} −→
λ4
r w

o
r

λ4
r −D

lf
r

= wor

1− e

r2

<∞ if r2 6= e < 1

(26)
It can be readily seen that the long time viscoelastic deflection is larger than
the corresponding elastic one, due to

wor

1− Dlf
r

λ4
r

<
wor

1− Dlf
r

λ4
r E∞

or wor

1− e

r2

<
wor

1− e

r2E∞

since E∞ < 1 (27)

and that at t → ∞ the pair of viscoelastic quasi-static and dynamic limits are
equal to each other as is the corresponding elastic pair.

While the limit theorem is most useful in establishing values of functions at
t = 0 or ∞, it offers no help in the temporal range 0 < t < ∞. The fact that
a function is bounded at both ends of its interval [0,∞], does not in any way
guarantee its stability elsewhere in the region. Consider the simple example of
the following LT function f(p) and its inverse f(t).

f(t) = 1
t− a

and f(p) = lim
B→∞

{exp(−ap) [Ei(ap− pB)− Ei(ap)]} (28)

with
lim
t→0
t→∞

f(t) = lim
p→∞
p→0

{
pf(p)

}
= 0 (29)

where Ei is the exponential integral. The two limits of Eqs. (29) give no hint
of the presence of a singularity at t = a.

The LT or Fourier transform (FT) inversions of Eqs. (20) to (23) for that
interval involve such complicated functions that these inversions can only be
evaluated numerically through fast Fourier transform (FFT) approaches [101] or
analytically through Post’s formula [86]

f(t) = L −1 {f(s)
}

= lim
k→∞

(−1)k

k!

(
k

t

)k+1
dkf(s)
dsk

∣∣∣∣∣
s=k/t

(30)

The approximate inversion technique developed in [90] which has proved very
useful and accurate in quasi-static problems when solutions are proportional to
exp(−t/τ), unfortunately does not enjoy the same success in dynamic problems
where the solutions depend on exp(t/τ).

Another approach is to solve Eqs. (7a) and (16) directly in the real time
plane. A solution is in the form

Wr(t) = wr e
−αr t + w∗r (31)

which from Eq. (16) then yields

α2
r + λ4

r e
αr t

t∫
−∞

E(t− t′) e−αr t
′
dt′ − Dlf

r (t) = 0 (32)

and
w∗1 = wo b0 6= 0 (33)
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∣∣∣ 10 Dynamic torsional divergence and creep buckling

It is relatively easier to examine creep buckling criteria for the DE rather
than integral constitutive relations. The governing relation Eq. (7) and (16)
may also be stated in a differential form based on the constitutive relation

P {σ11} = E0Q{ε11} (34)

with

P =
s∑

n=0
an

∂n

∂tn
and Q =

s∑
n=0

bn
∂n

∂tn
(35)

where an, bn (n = 0, 1, 2, · · · , s) and s are material property parameters.
The interdependence of the limits s and N of Eqs. (6) are derived in [38]. The
differential form of the constitutive relations results in

P
{
ρ
∂2w(x1, t)

∂t2
+ P (t) ∂

2w(x1, t)
∂x2

1

}
+ E0 IQ

{
∂4w(x1, t)

∂x4
1

− d4wo(x1)
dx4

1

}
= 0

(36)
and from Eq. (15), the amplitudes Wr(t) are defined by

P
{
Ẅr(t) − Dlf

r (t)Wr(t)
}

+ λ4
rQ{Wr(t) − wor} = 0 (37)

It is readily seen from Eqs. (35) that the relationship (37) now reads
ds+2Wr(t)
dts+2 + as−1

ds+1Wr(t)
dts+1︸ ︷︷ ︸

inertia terms

+

s∑
n=0


Anr(t)︷ ︸︸ ︷

λ4
r bn︸ ︷︷ ︸

internal
bending

−Dlf
r (t) an︸ ︷︷ ︸
applied

load

+ an−2︸ ︷︷ ︸
inertia
terms

 dnWr(t)
dtn

=

B0r︷ ︸︸ ︷
λ4
r b0 w

o
r︸ ︷︷ ︸

initial
imperfection

(38)

where

as = 1, Anr =
(
r2 bn − e an

)
P ∗r + an−2, B0r = r2 P ∗r b0 w

o
r

with n− 2 ≥ 0 r = 1, 2, 3 · · ·R and 0 ≤ n ≤ s (39)
Note that an increasing deflection can only occur if

0 < b0
a0

< e(t) = P (t)
PE

< 1

since then at least for r = 1, A01 = (b0 − e a0)P ∗r < 0 (40)
because all material property parameters an and bn for 0 ≤ n ≤ s are non
negative. Viscoelastic constitutive relations for materials with unbounded long
time strains are characterized by Q operators of Eqs. (35) with b0 = 0 [17], [38].

In general then, the following pattern emerges for additional viscoelastic
column loading constraints ζTH which are the material dependent threshold
values above which creep buckling is possible

Column creep buckling thresholds
Class I materials :
b0 = 0, lim

t→∞
{εij(t)} → ∞ =⇒ lim

t→tcr
{w(t)} → ∞ for 0 < e(t) < 1

with ζTH(En, τn, N) = 0

Class II materials :
b0 6= 0, lim

t→∞
{εij(t)} <∞ =⇒ lim

t→tcr
{w(t)} → ∞

for 0 < ζTH(En, τn, N) < e(t) < 1

e(t) = P (t)
PE

(41)
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Time Definition Eq. Criterion Fig.

tcr lim
t→tcr

{w(x, t)} −→ ∞ (1) classical creep 8
buckling definition

tεcr lim
t→tεcr

{
∂εT (x, t)

∂t

}
−→ 0 (46) compressive + 23

bending
strain reversal

t∗cr lim
t→t∗cr

{
log
[
∂w(x, t)
∂t

]}
(47) constant 25

−→ const. log[deformation]
rate

tLF F1(σapplied, tLF ) ≤ (55) deterministic 27
F2(σfailure, tLF ) or stochastic

prescribed P̃ (tLF ) ≤ 1 material failure

tLFD prescribed design deterministic
life time tLFD or stochastic

material failure

Note: If θ is substituted for w then Table 5 plies to torsional divergence

Table 5: Critical creep
buckling/divergence
times

The functions ζTH(En, τn, N) are prescribed by each material’s constitutive
relations (3) and must be determined on a case by case basis. For the differential
constitutive relation representation of Eq. (38), the parameter ζTH is given by

ζTH(En, τn, N) = ζTH(an, bn, s) =


0 Class I materials

b0
a0

Class II materials
(42)

with each material possessing different values for the two material property
coefficients a0 and b0.

Starting with Eq. (7b) and by repeating the same process, one can arrive a
similar conditions for the creep divergence threshold.

Torsional creep divergence thresholds
Class I materials :
b0 = 0, G∞ = 0,
lim
t→∞
{θ(t)} → ∞ =⇒ lim

t→tcr
{θ(t)} → ∞ for 0 < eθ(t) < 1

with ζθTH(Gn, τn, N) = 0

Class II materials :
b0 6= 0, G∞ > 0,
lim
t→∞
{θ(t)} <∞ =⇒ lim

t→tcr
{θ(t)} → ∞

for 0 < ζθTH(Gn, τn, N) < eθ(t) < 1

eθ(t) = V (t)
V eD

(43)
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∣∣∣ 12 Dynamic torsional divergence and creep buckling

2.3 Alternate definitions of creep buckling times

While column stability can be readily defined as a finite w(x1, t) at large times,
the precise analytical pin-pointing of creep buckling instabilities at finite times
is considerably more elusive. The classical formal definition of tcr of Eq. (1) does
not lead to finite time values as has been demonstrated in [33], [37] and [67] for
static viscoelastic columns. It is shown in the present paper that the same holds
true for dynamic columns as well. It is, therefore, necessary to prescribe and
adopt other more realizable criteria based on auxiliary stability requirements
or on material failure criteria. Table 5 summarizes the various definitions of
creep buckling critical times. A similar table can be prepared for creep torsional
divergence by substituting θ(t) for w(t) and eliminating the strain reversal entry,
which does not exists in shear.

The first three conditions in Table 5 are stability criteria while the last two
are based on material and/or structural failures. It must, however, be realized
that implicitly there corresponds a probability of failure to each of the five line
items in Table 5.

2.3.1 Creep buckling definition based on strain reversal

The column is subjected to compressive strains εc(x1, t) due to axial loads P (t)
and to bending strains εb(x1, x2, t) due to bending moments P (t)w(x1, t). The
total strain is the sum of these two as given by

εT11(x1, x2, t) =
t∫

−∞

C(t− t′) ∂

∂t′

{
P (t′)
A

}
dt′

︸ ︷︷ ︸
axial compressive strain εc

+
t∫

−∞

C(t− t′) ∂

∂t′

{
P (t′)w(x1, t

′)x2
ρ2A

}
dt′

︸ ︷︷ ︸
bending strain εb

(44)
where A is the cross sectional area and ρ the radius of gyration defined by
ρ2 = I/A. The creep compliance C(t) it related to the relaxation modulus E(t)
through their LTs,

p C(p) = 1
p E(p)

or
t∫

0

C(t− t′) E(t′) dt′ = t (45)

The region t < t1 represents elastic conditions and and is the very early
region of the relaxation modulus curve where E(t) = E0 shown in Fig. 3 . Creep
buckling under whatever definition of critical times will occur at tcr > t0. At
this point in time, the load has stabilized to a constant value P0 since the loading
has been completed at t1 < t0 in order to achieve initial elastic conditions. As
time progresses the compressive strains and the bending strains both increase
due to creep. The bending moment depends on the lateral deflection w(x1, t)
and εb will increase in time at a greater rate than εc. Eventually, the tensile
bending strain will exceed the axial compressive strain at one side of the column
and eT11 will begin to decrease (Fig. 23). Hence, one can define a critical time
tεcr as

lim
t→tεcr

{
∂εT11(x1, x

max
2 , t)

∂t

}
= P0

A

 lim
t→tεcr


t∫

−∞

∂C(t− t′)
∂t

dt′ + C(0)

−
t∫

−∞

∂C(t− t′)
∂t

w(x1, t
′) xmax2
ρ∗2

dt′ − C(0)w(x1, t)
xmax2
ρ∗2


 → 0 (46)

A similar approach has been used in [58] for establishing buckling stresses
in elastic plates and in [7] for creep buckling of viscoelastic plates and can be
applied to columns as well.

Vol. 3, No. 1, pp. 1–37 ASDJournal



Hilton
∣∣∣ 13

2.3.2 Creep buckling definition based on constant log deformation
rates

An inspection of Figs. 24 and 25 show that after some time displacements,
velocities and accelerations increase at constant rates on these semi-log plots.
This condition occurs by virtue of Eq. (31) when the r = 1 term begins to be the
dominant one for α1 < 0 and log[w(x1, t)] ∼ −α1t. The time at which the log
of the deflections first acquires constant, i.e. time independent slopes is called
here the pseudo creep buckling time t∗cr and is defined as the first time when

lim
t→t∗cr

{
log
[
∂w(x1, t)

∂t

]}
→ constant (47)

Fig. 26 shows plots of t∗cr for static and dynamic responses based on the two
considered SLSs. Results will be discussed in detail in a subsequent section. In
[58] a similar approach was used based on the intersection of the tangents of the
straight portions of the strain vs. load plots for elastic plates, thus eliminating
the curved parts of the curves. Neither approach is based on any rigorous
theoretical considerations and must be viewed with caution.

2.3.3 Column survival definition based on material failure probability

Viscoelastic failure criteria, such as ultimate stresses, degrade in time indepen-
dently of relaxation moduli and failures may occur before or after any creep
buckling instabilities manifest themselves (Fig. 23). These are material failures
which are independent of creep buckling and define the life time of the structure
designated as tLF . Consequently, tcr may be greater, smaller or equal than tLF .
Indeed, in Refs. [29] [33] and [96] Shanley & Ryder’s [91] interaction curve ap-
proach has been used to estimate failures under combined inelastic deterministic
stresses.

Some failure mechanisms observed in composites are substantially different
from those observed in metals [18], [32], [74], [84], [85], [105], as delamination
is a phenomenon unique to composites (Fig. 28). From a design analysis point
of view, one needs only to consider delamination onset because at that stage
a flight structure has for all practical purposes failed, particularly if it is a
light weight flight structure. In [18] an expression has been formulated for
the temperature, moisture and time dependency of uniaxial composite failure
stresses. An extensive review of available experimental composite failure data
is presented in [42] where such data has been used to formulate deterministic
and stochastic delamination failure analyses. Experimental results indicate that
uniaxial deterministic delamination onset stresses in tension and shear obey laws
of the type

σF
ij(t) =


σF
ij0 −∞ ≤ t ≤ tF2

σF
ij0 − Dij log

(
t/tF4

)
tF2 ≤ t ≤ tF3

0 t ≥ tF3

(48)

where all parameters are material, temperature, moisture and load (tension,
shear, etc.) dependent.

In [43] deterministic and stochastic invariant combined load failure criteria
have been developed in terms of two relations

1
3

q∑
i=1

[
J̃i(x, t)
Ji(x, t)

]ci
= Ṽ (x, t) (49)

1
3

q∑
i=1

[
J̃i(x, t)
Ji(x, t)

]ci
= ṽ(x, t) (50)
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∣∣∣ 14 Dynamic torsional divergence and creep buckling

where Ji, Ji and ci are mean values and random variables are indicated with
a ˜ . The upper summation limit q is the number uniaxial loads. Typical
deterministic failure stress surfaces may be found in [43] and [46]. The applied
and failure stress invariants are defined by

J̃1 = σ̃ii J̃2 = σ̃ij σ̃ij J̃3 = σ̃ij σ̃ik σ̃kj (51)

J̃1 = F̃ii J̃2 = F̃ij F̃ij J̃3 = F̃ij F̃ik F̃kj (52)
where Fij are uniaxial failure stresses.

Failure occurs whenever

Ũ(x, t) = Ṽ (x, t) − ṽ(x, t) ≤ 0 (53)

For deterministic applied loads and random failure stresses, or vice versa, one
needs only to apply one probability density function (PDF) to either Eq. (49)
or (50). Ref. [32] presents an evaluation of experimental delamination data
that can be represented by a Weibull type probability density function (PDF)
[75], [76], [106]. Upon integrating this PDF, one obtains the failure probability
P̃F as

P̃F (x, t) = 1 − exp
{
−

[
Ũ(x, t)
κ

]γ}
(54)

where the material property parameters γ and κ and their values were discussed
in detail in [32] and [42]. Since for plate problems the stresses σb, σn and σs
are functions of x and t, it follows that the failure probabilities P̃F are also
dependent on position within the plate and on time.

The time tLF corresponding to the largest value of P̃ at a point xi = ci in
a structure is the life time or survival time. It is defined by

P̃ (c, tLF ) = max
{
P̃ (x, t)

}
≤ 1 (55)

In stochastic probabilistic structural failure analysis, one seeks similar points
or regions where P̃F (x, tLF ) = 1 or alternately the maximum probability value
P̃F (x, tLF ) < 1 to indicate column survival probabilities under a prescribed load
P (t) < PE and a given initial imperfection wo(x). A similar but distinct class
of problems arises from the imposition of the specification of design survival
times tLFD each corresponding to a design failure probability P̃FD(tLFD) ≤ 1,
or conversely the prescription of a tLFD with an attendant P̃FD(tLFD).

It must, of course, be remembered that the five decisive times listed in Table
5 (tcr, tεcr, t∗cr, tLF , tLFD) are unrelated to each other and each represents a
distinct definition of instability or failure conditions.

2.4 Computational protocols

Excellent comprehensive treatments of viscoelastic computational analyses and
protocols maybe found in [77], [83], [94] and [97], to mention a only a few texts.

The present problem involves the solutions of the column and torsion real
time governing differential-integral relations of Eq. (7) . This can be accom-
plished in any one of the following ways:

1. In special cases (constant properties, loads, temperatures, etc.) Laplace
or Fourier time transforms can be used [3], [4], [41].

2. In more complicated problems, a combination of spatial finite element and
temporal finite difference or recurrence relation formulations is available
[110], [111].

3. Galerkin’s method [62] may be used to reduce the multidimensional spa-
tially dependent PDE relations to temporal ODEs or integral-differential
equations.
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4. Alternately, the constitutive relations may be formulated in terms of dif-
ferential operators as exemplified by the column governing relation (38).
This system can be solved using a Runge-Kutta approach [68], [87] as seen
from Eq. (66). The inherent difficulty with the differential constitutive
relations is that characterization of real materials requires derivatives of
orders between 20 and 30, the s values in in Eq. (35). The linear integral
constitutive relations, on the other hand, have relaxation functions repre-
sented by Prony series [87], Eq. (6), where the character of the integral
relations does not change as N ∼ s increases or decreases in value.

5. Integral ordinary differential equations may also be solved with a newly de-
veloped protocol [56] which serves to evaluate the constitutive relation in-
tegrals in Eq. (3) and (4). This removes the undesirable need to solve high
order DEs stemming from the alternate DE constitutive relation forms.
Additional and distinct numerical protocols may also be found in [98] and
[113].

2.5 Illustrative examples for two specific viscoelastic materials

As a set of simple but meaningful examples consider the single Maxwell model
(SMM) and the standard linear solid (SLS) [17], [38]. They represent the most
primitive viscoelastic constitutive relations exhibiting Class I and II time behav-
ior of Table 3. Their 1–D constitutive relations are defined by their relaxation
moduli E(t)

SMM =⇒ E(t) = exp
(
− t
τ

)
(56)

SLS =⇒ E(t) =
[
1 − τ2

τ1

]
exp

(
− t

τ1

)
+ τ2

τ1
(57)

The differential operators of the constitutive relations (35) for the SMM
reduce to

SMM =⇒ P = ∂

∂t
+ 1

τ
and Q = ∂

∂t
with τ > 0 (58)

while for the SLS they become

SLS =⇒ P = ∂

∂t
+ 1
τ2

and Q = ∂

∂t
+ 1
τ1

with τ1 > τ2 > 0 (59)

resulting in the governing DEs

 SMM =⇒

SLS =⇒


inertia terms︷ ︸︸ ︷

d3Wr

dt3
+ 1

τ2︸︷︷︸
= A2r

d2Wr

dt2
+
[
λ4
r − Dlf

r (t)
]︸ ︷︷ ︸

= A1r(t)

dWr

dt

+


−Dlf

r (t)
τ

λ4
r

τ1
− Dlf

r (t)
τ2

︸ ︷︷ ︸
= A0r(t)

Wr =


0

λ4
r w

o
r

τ1

︸ ︷︷ ︸
= B0r(t)

r = 1, 2, · · · , R and t ≥ 0 (60)

Note that the governing DEs for these two distinct materials are similar except
for the values of A0r and B0r. In the absence of inertia terms, both DEs have
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solutions of the type

Wr(t) ∼ exp

−
t1∫

−∞

A0r(t′)
A1r(t′)

dt′ − A0r
A1r

(t− t1)

︸ ︷︷ ︸
= FLr(t,t1)

 (61)

For the SLS the argument of each exponential function becomes

SLS =⇒

FLr(t, t1) = −
t1∫

−∞

(
r2

τ1
− e FP (t′)

τ2

)
dt′

r2 − e FP (t′)︸ ︷︷ ︸
transient loading=FTr(t1)

−
(
r2

τ1
− e

τ2

)
t− t1
r2 − e︸ ︷︷ ︸

steady state loading
= FSTr(t,t1)

r = 1, 2, · · · , R and t > t1 (62)

The corresponding SMM FLr function can be obtained by setting τ = τ2 and
τ1 =∞ in Eqs. (57) and (62).

For the deflection to increase with time, the function FST1(t, t1) > 0. The
smallest constraint is placed on the value of e when r = 1 and the following
conditions must be satisfied

if FT1 < 0 then FST1 > |FT1| > 0

if FT1 > 0 then FST1 > 0

 t > t1 (63)

Therefore, in order for the deflection to increase with time one of the terms
of the ratios A01/A11 must be negative. For the SMM this does not present
a problem since −A01 < 0 and A11 > 0. However, for the SLS, while the
denominator is always positive, the numerator for r = 1 can be negative if and
only if

SLS =⇒ 0 < τ2
τ1
< e < 1 with τ1 > τ2 and r = 1 (64)

Consequently for the SLS where the long time strains are bounded, only loads in
the range P < τ2PE/τ1 < PE , stemming from r = 1, will lead to creep buckling
as defined by Eq. (1). Subsequent Wr(t) terms of Eq. (15) where r > 1, will
always mandate e values with larger lower bounds necessary to achieve creep
buckling. These larger e values even if below unity are irrelevant, since the
divergence of w(x, t) with time will occur at any of the permissible e values for
r = 1. For the Class I viscoelastic materials exhibiting unbounded long time
strains, any load P < PE will lead to creep buckling with w(tcr)→∞.

When inertia terms are included then the solution of Eqs. (60) becomes

Wr(t) =
3∑
q=1

Bqr e
αqr t + B0r

A0r
r = 1, 2, · · · , R and t > 0 (65)

with αqrt related to FLr(t, t1) as defined in Eqs. (61) and (62). The αqr are
readily identified as the roots of a third order algebraic equation and are listed
in standard algebra texts. From a creep buckling point of view only those
roots where <{αqr} > 0 are of interest, since the <{αqr} < 0 and the ={αqr}
parts each lead to stable finite displacements in time for P < PE , such that
lim
t→∞

w(x, t) <∞.
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Material τ1 τ2 E∞ ζTH e Fig. No.

SLS .5 .25 .5 .5 .3, .6 4 – 13

SLS .5 .05 .1 .1 .06, .12 14 – 17

SMM ∞ 20 0 0 .3, .9 19 – 22

Table 6: Parametric
values for illustrative
examples

3. Discussion of results

Numerical solutions of Eq. (38) were obtained by employing a fourth order
Runge-Kutta method, yielding s+ 3 coupled simultaneous ODEs of the form

y1r(t) = Wr(t)

y2r(t) = ẏ1r(t)

y3r(t) = ẏ2r(t)

... =
...

y(s+2)r(t) = ẏ(s+1)r(t)

y(s+3)r(t) = B0r − as−1 y(s+2)r(t)−
s∑

n=0
Anr(t) y(n+1)r(t)



(66)

The computations were carried out using MATLAB© on a MacBook ProTM.
Several illustrative solutions for simple SLS (Figs. 4 to 17) and SMM (Figs. 19

to 22) materials of Eqs. (60) have been carried out with load patterns described
by Eqs. (1) and displayed in Fig. 1 . The loading interval 0 ≤ t ≤ t1 can, of
course, be lengthened or shortened for increased or decreased relaxation times,
provided the constraint t1 ≤ t0 is enforced. The four typically representative
loads show significant differences between each other both in values as well as
in shape. The relaxation moduli for the illustrative examples are shown in
Fig. 3 and exhibit variations in τ and E∞ values. Quasi-static and dynamic
solutions for various values of the pertinent parameters as listed in Table 6 are
displayed in these figures. For comparison purposes, all curves are normalized
w.r.t. their individual maximum values.

Figs. 4 and 5 show SLS deflection results for Load B under quasi-static and
dynamic conditions. The value of the threshold ζ and fully relaxed modulus
E∞ is .5, since both quantities are equal to τ2/τ1 for the present. Note the
striking differences in responses for the quasi-static and dynamic cases. In both
examples, the results clearly indicate, as predicted by the foregoing analysis,
that the SLS column is stable for loads below the threshold ζTH values while
exhibiting creep buckling as defined by Eqs. (1) for e ≥ ζTH .

Figs. 6 through 9 are composite plots for the SLS incorporating quasi-static
and dynamic results of the two previous figures and showing their relation to the
loading and moduli histories. The loadings are those of Loads A – D described
in Eqs. (14) and they reach their maximum values at t1 < t0 when relaxation is
initiated. For both sets of chosen τs in these illustrative examples, the dynamic
motion decays and creep buckling occurs after the relaxation moduli have de-
creased to their respective long time fully relaxed values of E∞. Value changes
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in the various parameters of Eq. (7) will shift the deformation curves to the
left or right (forward or backward in time) relative to the modulus curves. De-
tailed responses for each load, as well as the relaxation moduli, are depicted in
Figs. 10 to 17.

The loading rise time t1 is relatively short, since it must be less than the
time t0 when relaxation begins in order to achieve comparable elastic initial
conditions. In the examples treated here it is four orders of magnitudes smaller
than than tR, the time when full relaxation of the modulus (E∞) is realized.
The influence of the various loads A – D over then entire relaxation is minimal,
since the initial transients die out relatively quickly. However, the distinction in
quasi-static and dynamic responses is readily visible from Figs. 6 and 17. In the
loading range e < ζTH in particular, the quasi-static deflections rise to a steady
state finite value, while the corresponding dynamic ones oscillate and damp out
to zero. The foregoing represent typical Class II material column behavior.

Composite plots for the SMM under Loads A – D are shown in Fig. 18 and
are derived from the detailed graphs of Figs. 19 to 22. For this Class I material
the threshold ζTH = 0 and creep buckling proceed under any load 0 < P < PE .
Again it is seen that for the same reasons as stated above, the influence of the
various Load shapes A – D is not discernible. This is equally true for longer
loading periods, t1 = .001 and .01 for the SLS and SMM respectively with
relaxation times of .5 and 20.

The next series of figures (23 to 27) speak to the various protocols for creep
buckling estimations. Fig. 23 is a typical set of curves showing bending and
compressive strains in relation to the maximum lateral deflection. The strain
reversal is unambiguously visible at tεcr = .645. The pseudo critical times t∗cr are
shown in Fig. 26 and are derived from plots of the type displayed in Figs. 24 and
25 and are subject to less precise visual inspection of departures from constant
slopes. Note also that these changes in slopes occur at different times for de-
flections, velocities and accelerations (Fig. 24).

Fig. 27 represents critical times at various operating temperatures as a func-
tion load ratios e. These curves are being intersected by failure condition en-
velopes at the same temperatures. These crossing determine the lifetime or
survival column times tLF described previously and the failure condition deter-
minations are outlined next.

The invariants of Eqs. (51) and (52) are based on the three distinct stresses
present in viscoelastic columns, namely

compression : σc = P (t)
A

bending : σb = P (t)w(x1, t)x2
I

shear : σs = 1
h

c∫
x2

∂σb(x1, x
′

2, t)
∂x
′
2

h dx′2


(67)

and are

J̃1 = |σc|+ |σb| J̃2 = (|σc|+ |σb|)2 + 2σ2
s

J̃3 = (|σc|+ |σb|)3 + |σ3
s |+ 3 (|σc|+ |σb|)2 |σs|+ 3 (|σc|+ |σb|)σ2

s (68)

with h and A respectively the column width and area.
Fig. 28 depicts experimental results for viscoelastic composites uniaxial ten-

sion and shear delamination onset stresses as reported by Dillard & Brinson
1983. These values and the Weibull failure distributions observed in the exper-
iments reported in [32] together with the analytically derived applied stresses
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are introduced into Eqs. (49) to (54), (67) and (68) to produce Figs. 27 to
30. The solutions displayed in Fig. 29 indicate the influence of higher temper-
atures, which serve to increase failure probabilities while decreasing survival
times. From Fig. 30 it is seen that inertia contributions serve to increase failure
probabilities and to decrease survival times under static loads, when compared
to static column solutions.

The latter plots represent the ultimate goals of the present analyses as they
relate material failure (delamination) and column bending with failure probabil-
ities and survival times. Separate probabilistic analyses can also be introduced
for the determination of viscoelastic stresses, strains and column deflections if
moduli are modeled in terms of actual random properties and the stochastic an-
alytical formulations in [39] are carried out. Under such procedures one is then
confronted with two separate pairs of failure probabilities and survival times,
i.e., one for creep buckling and the other for delaminations. Depending on these
combinations, the shortest survival time and the highest failure probability will
govern column life time design and predictions. The appropriate failure mode
(buckling vs. delamination) will emerge as a by-product of the more general
stochastic analysis.

Selection and use of viscoelastic material properties can, of course, be op-
timized with prescribed constraints on deformation, lifetime, or probability of
failure, etc., as shown in [5], [16] and [40]. No optimization attempts were made
here as the primary intend is to study dynamic effects on creep buckling.

With the current pervasive use of high polymer fiber composites in primary
load carrying aerospace3 structures, the use of viscoelastic analyses rather than
elastic ones becomes ever more mandatory. Typical examples are wings, hori-
zontal and vertical tail surfaces, fuselages, helicopter blades, high temperature
metal turbine blades, wind turbine blades, etc.

4. Conclusions

Analytical formulations for and computational simulations of linear viscoelastic
columns indicate that the inclusion of dynamic phenomena, which are predom-
inantly caused by viscoelastic material properties rather than transient load-
ing patterns, greatly alters resulting deformation patterns and stability results.
However, very short time individual loading patterns do not affect deformations
and creep buckling times. Furthermore, it is shown that columns and wings
made of viscoelastic materials with finite long time strains do not creep buckle
under either quasi-static or dynamic conditions unless axial loads/aerodynamic
torques exceed a lower bound which depends solely on viscoelastic material
parameters and is unaffected by loading paths and column dimensions.

Since neither quasi-static nor dynamic linear viscoelasticity lead to formal
analytic creep buckling/divergence times, alternate definitions were explored.
Unfortunately, these procedures do not yield equal critical time results. How-
ever, the strain reversal method is the most realistic and physically defensible
one for columns. Similarly, approaches imposing finite limits on angles of twist
are best suited for viscoelastic torsional divergence definitions.
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Appendix A – Evaluation of lts of the Cr(t) functions

Consider the LT of the loading function FP (t), which in turn defines the Cr(t)
function of Eqs. (17)

Cr(p)
e P ∗r

=
t1∫

0

FP (t) e−pt dt+ e−p t1

p
= FP (p, t1)+ e−p t1

p
(0 ≤ p ≤ ∞) (69)

where FP (p, t1) depends on the definition of the applied loads as prescribed by
Eq. (14) their LTs become

Cr(p)
e P ∗r

=



FA(p, t1) Load A

FB(p, t1) = 1
2 p

[
e−p t1 + π2 − 2π t1 p

4 p2 t1 + π2

]
Load B

FC(p, t1) = 1
p

Load C

FD(p, t1) = e−p t1

p2 Load D


(70)

with Cr∞/eP ∗r = 1 for Loads A through D and where

FA (p, t1) = −4 t1 e−p t1

[4 p2 t21 + π2]3
[
−2π4 + 32 p3 t31 + 8 t31 p3 π2 + 32 p4 t41 + t1 p π

4

+16 t51 p5 − 24 p t1 π2] +
16π t1

(
12 p2 t21 − π2)

[4 p2 t21 + π2]3
+ e−p t1

p
(71)

It is to be noted that the term Cr(t) primarily depends on the load function
P (t) of Eq. (17) and that its long term behavior is insensitive to the relatively
very short time initial ramp loading functions of Eqs. (14).
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Figure 2: Loading and
relaxation functions
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SMM relaxation moduli
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and dynamic deflections
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Figure 8: Quasi-static
and dynamic unstable
deflections for e =
.6, τ1 = .5, τ2 = .25,
loads A - D

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

Fig.  8  COMPOSITE  FOR  UNSTABLE  LOADS  A - D
            e = .6,        tttt

1111
    = .5,     tttt

2222
    = .25,     zzzz = 0

D
EF

LE
C

TI
O

N

LOG  (TIME)

Figure 9: Composite
static/dynamic for e =
.105, τ1 = .5, τ2 = .05,
loads A - D
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Figure 10: Quasi-static
and dynamic deflections
for τ1 = .5, τ2 = .25,
load A
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Figure 11: Quasi-static
and dynamic deflections
for e = .3 and 6, load B
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Figure 12: Quasi-static
and dynamic deforma-
tions for e = .095 and
.105, load C
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Figure 13: Quasi-static
and dynamic deforma-
tions for e = .3 and .6,
τ1 = .5, τ2 = .05, load
D
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Figure 14: Quasi-static
and dynamic deforma-
tions for e = .095 and
.105, τ = .5 and .05,
load A
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Figure 15: Quasi-static
and dynamic deforma-
tions for e = .095 and
.105, τ1 = .5, τ2 = .05,
load B
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Figure 16: Quasi-static
and dynamic deforma-
tions for e = .090 and
.105, τ1 = .5, τ2 = .05,
load C
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Figure 17: Quasi-static
and dynamic deforma-
tions for e = .090 and
.105, τ1 = .5, τ2 = .05,
load D
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Figure 18: Quasi-static
and dynamic SMM de-
formations for e = .3
and .9, τ = 20, loads A
- D
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Figure 19: Quasi-static
and dynamic SMM de-
formations for e = .3
and .9, τ = 20, load A
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Figure 20: Quasi-static
and dynamic SMM de-
formations for e = .3
and .9, τ = 20, load B
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Fig. 20  QUASI-STATIC  &  DYNAMIC  DEFLECTIONS  tttt    = 20    
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Figure 21: Quasi-static
and dynamic SMM de-
formations for e = .3
and .9, τ = 20, load C
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Fig. 21  QUASI-STATIC  &  DYNAMIC  DEFLECTIONS  tttt    = 20    
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Figure 22: Quasi-static
and dynamic SMM de-
formations for e = .3
and .9, τ = 20, load D
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Fig. 22  QUASI-STATIC  &  DYNAMIC  DEFLECTIONS  tttt    = 20    
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Figure 23: Viscoelastic
column bending strain
reversal
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Figure 24: Dynamic
kinematic variables for
e = .8, τ1 = .5, τ2 = .25
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Figure 25: Quasi-static
and dynamic SMM de-
formations for e =
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Figure 26: Pseudo crit-
ical time vs. load ratio
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Fig. 26  PSEUDO  CRITICAL  TIME  vs.  LOAD  RATIO
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Figure 27: Creep buck-
ling/torsional diver-
gence and delamination
onset times
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Figure 28: Uniaxial
delamination creep
strengths
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Fig. 29  PROBABILITY  OF  DELAMINATION  ONSET  &  SURVIVAL  TIMES
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Figure 29: Probability
of delamination onset
vs. survival time
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Figure 30: Probability
of delamination onset
for quasi-static and dy-
namic conditions
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