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Abstract

This paper describes several approaches aiming to significantly reduce the amount of
time required to determine the worst case gust loads for aircraft. A number of Design
of Experiments, surrogate modeling and optimization techniques are applied in order
to determine meta-models encompassing the entire flight envelope and different fuel
cases using only a few test points. All of the methodologies are compared on data from
a simple, assumed modes, free-free aircraft model with 5 ”interesting quantities”, and
are shown to determine accurate predictions of the worst gust case with far fewer gust
response calculations than a conventional Monte-Carlo approach.

1. Introduction

Unsteady loads calculations play an important part across much of the design
and development of an aircraft, and have an impact upon the concept and
detailed structural design, aerodynamic characteristics, weight, flight control
system design, control surface design and performance. They determine the
most extreme stress levels and estimate fatigue damage and damage tolerance
for a particular design. For this purpose, load cases due to dynamic gusts and
manoeuvres are applied to detailed structural models [23, 3, 12, 15] in order to
determine the worst values for a range of different Interesting Quantities (IQs)
e.g. load factors, shear stresses, etc. There may be 1000s of IQs that need to
be considered.

The certification of large commercial aircraft is covered by the EASA CS-25
(Certification Specifications) or FAR-25 documents. A range of load cases that
has to be accounted for are described and are a primary prerequisite for assuring
structural integrity over the operating environment of the aircraft. Loads re-
quirements are defined in the context of the design envelope shown in Figure 1.
Certification specifications require that enough points, on or within the bound-
aries of the design envelope, are investigated to ensure that the most extreme
loads for each part of the aircraft structure are identified. In this context, the
design envelope encompasses the respective ranges of permitted mass/centre of
mass envelopes.

The flight conditions and manoeuvres, which provide the largest aircraft
loads, are not known a-priori. Therefore the aerodynamic and inertial forces are
calculated at a large number of conditions to give an estimate of the maximum
loads, and hence stresses and deflections, that the structure of the detailed
aircraft design will experience in service. Table 1 shows an estimate of the
number of conditions that are typically required in the analysis of a large civil
aircraft.
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Figure 1: Flight Envelo-
peDesign Speed vs Alti-
tude [23].
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Table 1: Estimate of Number
of Load Cases Required.

Number of points Parameters

50 flights points (altitude and speed)
100 mass cases (loaded weight and weight distribution)
10 control surface configuration
50 manoeuvres and gusts (gradient length)
4 control laws

10,000,000 TOTAL NUMBER OF CASES REQUIRED

A simplistic estimate of the number of analyses required would multiply
the numbers of conditions to give 10,000,000. Even with simplistic models
of the aircraft behaviour this is an unfeasible number of separate simulations.
However, engineering experience is used to identify the most likely critical loads
conditions, meaning that approximately 100,000 simulations are required for
conventional aircraft configurations. Furthermore, these analyses have to be
repeated every time that there is an update in the aircraft structure. Within
the modern civil airframe industry, each of these loads calculation cycles takes
a considerable time.

A further important point is that the new aircraft configurations that will
be vital to meet environmental performance targets e.g. the 2020 vision, are
likely to possess design envelope boundaries and therefore critical loads cases,
that are very different from those previously found on conventional aircraft.
If the aerospace industry moves to novel configurations there will be a longer
product development cycle as it will not be possible to rely on engineering
judgement from similar aircraft. Engineering experience, that is currently used
to reduce the number of critical loads cases without compromising air safety,
cannot be extended to novel configurations. This would mean a huge increase
in the number of loads analyses that would be needed to ensure air safety for
novel aircraft and hence very large increases in both design cost and turnaround
time. This could result in a reluctance to move to new configurations unless
the loads process cost can be brought back to the status quo which can only
be achieved through reliance on modelling (which must be more accurate and
rapid than is currently possible) and robust critical load identification in place
of engineering judgement. Hence, there is a need to formalise the critical loads
identification process so that there is neither a development cost penalty or a
decrease in safety. Indeed, such a capability is crucial in enabling the aircraft
design process to evolve so that more concepts can be explored and matured
over shorter lead times.
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The number of different flight conditions that need to be considered to assess
the maximum loads that will be encountered by a civil aircraft is large and must
be reduced. At present engineering experience is used to achieve a significant
reduction for conventional aircraft geometries whose response can be calculated
using assumptions of linearity. With the advent of non-linear control systems
and new manufacturing techniques, even conventional aircraft are becoming
increasingly nonlinear and the linearity assumption is becoming unacceptable.
One of the aims of the FFAST project is to implement and assess the capabilities
of a general methodology to minimize the number of flight conditions that are
needed to characterise the whole parameter space for aircraft design through
the use of optimisation and design of experiments methodologies. In addition,
since gusts are often the most critical load case for structural design and also
are the main fatigue loading source for the majority of the structure, fast and
accurate methodologies will be developed to determine the worst case gust loads
for a non-linear aircraft.

Currently, a preliminary selection of the most important cases needs to be
made, generally based on the ”worst case” approach and using a great deal
of engineering experience to give an estimate of the maximum loads that the
structure of the aircraft will experience in service [23, 15]. The prediction of
linear gust responses is well-established and used in industry. The airworthiness
regulations require that gust loads analysis is performed in both the time (crit-
ical high frequency responses) and frequency (critical low frequency responses)
domains, considering both vertical and lateral gust patterns. In the time do-
main, an approach based upon tuned ”1-Cosine” gusts has developed [23, 7, 9]
which involves finding the particular time gust sequence that causes the worst
(largest) response for each ”Interesting Quantity” (IQ) such as load factor, root
bending moment, shear force, etc. As explained above, the current process is
very time consuming.

In this work, a number of different approaches are applied in order to speed
up the gust loads prediction process through the efficient and accurate deter-
mination of the worst ”1-Cosine” gust loads case. Surrogate modeling and
optimization techniques are applied to determine the worst case loads across
a range of different flight conditions (altitude, speed, fuel condition, centre of
gravity position) to enable the global worst case to be found. The optimal sam-
pling technique using the Kriging predictor is introduced and shown that it is
capable of identifying the worst cases using much smaller number of samples
which are needed for conventional sampling techniques such as Latin Hyper-
cube Sampling (LHS) or Design of Experiments (DOE). The approaches are
evaluated on a simple free-free aeroelastic model comprising of rigid body and
flexible modes.

2. Worst Case “1-Cosine” Gust Response

A typical “1-cosine” gust is shown in Figure 2, with a maximum gust velocity of
Wg0 and the gust wavelength is Lg. Of interest is the gust wavelength Lg that
produces the greatest maximum and minimum response of particular ”inter-
esting quantities” (IQs), e.g. wingtip deflection, centre of gravity acceleration,
wing root bending moment, etc. For different gust gradients H (half the gust
wavelength (m)), the maximum gust velocity Wg0 (m/s) is defined as [23]

Wg0 = Wref

(

H

106.17

)1/6

(1)

and it can be seen in Figure 3 how the maximum gust velocity increases with
wavelength. The reference gust velocity Wref reduces linearly from 17.07 m/s
EAS at sea level to 13.41m/s EAS at 4572m (15000ft), and then again to 6.36
m/s EAS at 18288 m (60000ft).
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Figure 2: ”1-Cosine Gust” [23].

Figure 3: Varying Amplitude Gusts Following Scaling
Law.
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3. Aeroelastic Model

As an initial test bed for the gust load prediction methods, the three-dimensional
NLR 5 DOF model [22] was used. The model is shown in Figure 4, with the
structure modelled with a series of linear beam elements and lumped masses,
and aerodynamic strip theory with downwash tail effects included. The model is
symmetrical, as a result for the vertical gust case there are two rigid body modes
(heave and pitch) and three flexible modes (wing root bending, wing root torsion
and rear fuselage bending). Additionally, it is possible to define the structural
properties (dimensions, mass distribution, inertia, stiffness) of the aircraft, and
also the gust input. In this work, the discrete gust shape of the form ”1-Cosine”
was considered. The response of five IQs (load factor, wing root shear force,
wing root bending moment, wing root torsion moment, tail root shear force)
can be determined; a typical example of input gust and response for the IQs is
shown in Figure 5.

For a particular aircraft configuration (flight condition, size, mass distri-
bution, etc) a range of different wave length ”1-Cosine” gusts can be applied,
resulting in the envelopes shown in Figure 6 of the largest maximum and min-
imum responses for the five IQs. It can be seen that the various maxima and
minima do not occur at the same gust length, and these will change depending
upon the flight condition, mass distribution, centre of gravity position, etc.

Figure 4: Structural and
Aerodynamic Elements in
the NLR model.
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Figure 5: Typical IQ re-
sponses to ”1-Cosine” Ver-
tical Gust Input (top left).
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Figure 6: Maximum and
Minimum Envelopes for
the IQs for Different Gust
Lengths.
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4. Surrogate Modelling Approaches

A complete description of metamodelling techniques and their use in modern
industrial applications is beyond the scope of this paper [5]. We would like just
to introduce a few basic concepts allowing to reader to clearly understand how
these techniques are used inside the FFAST project to reduce the time required
for the calculation of aircraft gust response. The process for the definition of a
metamodel, to be adopted for the simulation of the aircraft gust response can
be synthesized in the following three steps: Sampling, Metamodeling and Model
Validation. These steps will be briefly detailed in the following paragraphs.

The main scope of Sampling is to get the maximum amount of information
related to the system behaviour with the minimum effort in terms of computa-
tion time, so with the minimum number of samples. The design space is sampled
and the available sampling techniques differ in how they distribute these sam-
ples into the design domain. The classical experimental designs originated from
the theory of Design of Experiments when physical experiments are conducted.
In this category it is worth mentioning the factorial or fractional factorial [17],
central composite design (CCD) [17, 1] and Box-Behnken [17] approaches. In
the case that the maximum or minimum regions of the fitted surfaces are of
interest optimal sampling method [14] can be used. In this method the samples
are mostly taken from the regions around maximum/minimum values of the
function.

Traditionally, Metamodeling originated from the classical Design of Experi-
ments (DOE) theory, where polynomial functions are used to build-up response
surfaces, or metamodels. The polynomial coefficients are determined in a least
square sense, so the effect is to smooth the peaks of the real behaviour. Sacks
et al. [21, 20] proposed the use of a stochastic model, called Kriging [2], to treat
the deterministic computer response as a realization of a random function with
respect to the actual system response. Neural networks have also been applied
in generating response surfaces for system approximation [18]. Among the other
types of techniques available are the Radial Basis Functions (RBF) [4, 6] and
Multivariate Adaptive Regression Splines (MARS) [8] approaches. It is difficult
to define ”a-priori” the best metamodelling technique. Here it was decided to
limit the investigation to only two approaches, the Kriging and Radial Basis
Functions.

4.1 Radial Basis Function (RBF)

The Radial Basis Function method is an interpolating scheme, originally devel-
oped by Dyn et al. [4], used to describe the behavior of non-linear functions
once known a set of N sample points. The approximation is obtained by a linear
combination of radial functions, each one centered in one of the sample points.
Among the most frequently adopted RBF are

linear φ (rx−xn
) = rx−xn

(2)

cubic φ (rx−xn
) = (rx−xn

)
3

(3)

Gaussian φ (rx−xn
) = e−(rx−xn

)2 (4)

where the distance between the generic point x and the sample points xn is

rx−xn
= ‖x− xn‖

2
(5)

4.2 Kriging predictor

The introduction of the Kriging approach [2] is due to the observation that
many computer analysis codes are deterministic and therefore not subject to
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measurement error, consequently the usual measures of uncertainty derived from
least-squares residuals have no obvious meaning.

To construct the Kriging meta model, it is assumed that ns vectors of in-
dependent input parameters X =

[

x(1) x(2) x(ns)
]

with x(i) ∈ ℜm×1 are se-
lected by using a sampling method and the corresponding output parameters
Y =

[

y(1) y(2) y(ns)
]

with y(i) ∈ ℜn×1 are calculated using deterministic anal-
ysis of system. Then a universal Kriging predictor for the output data consists
of a second order polynomial function is expressed as [21],

ŷi =β0,i +

m
∑

k=1

βk,ixk +

m
∑

k=1

βkk,ix
2
k +

∑

k<l

m
∑

l=2

βkl,ixkxl + ǫi (x)

=β0,i + bT
i x+

1

2
xTBix+ ǫi (x)

(6)

where β•,i are regression coefficients, bi = [β1,i β2,i ... βp,i]
T
m×1,

Bi =

















2β11,i β12,i . . . β1m,i

2β22,i . . . β2m,i

. .
. .

. .
sym. 2βmm,i

















m×m

and ǫi (x) is a random function having zero-mean and covariance,

cov
(

ǫi (x) , ǫi

(

x(h)
))

= σ2
iCi

(

x,x(h)
)

(7)

where σ2
i is the variance of the ith output data and Ci is the correlation function

between untried input parameter x and one of the design sample x(h), h =
1 : ns. A suitably chosen correlation function may improve the quality of fit
as explained below. The random function represents the error and since our
application is to fit a regression model on a deterministic computer code, any
lack of fit will be due entirely to modeling error (incomplete set of regression
terms), not measurement error or noise [14]. Hence, the random function in
Eq. (6) becomes a function of the system parameters x and the errors of the
output predictor in Eq. (6) are correlated. The correlation function of the
prediction errors is assumed to be related inversely to the distance between
the corresponding points in the output [14]. The closer the points in space,
the greater the correlation between the error terms. Because the components of
input parameters are statistically independent, one may calculate the correlation
function between the input parameters as [21],

Ci

(

x,x(h)
)

=

p
∏

j=1

Cj,i

(

xj , x
(h)
j

)

(8)

Different types of correlation functions have been introduced in [13] and [16].
The choice of correlation function depends on underlying behavior of the true
response. However, this underlying behavior is often not readily apparent, in
which case the following correlation function may be used,

Cj,i

(

xj , x
(h)
j

)

= exp
(

−ζj,i

∣

∣

∣
xj − x

(h)
j

∣

∣

∣

νi)

1 ≤ νi ≤ 2 (9)

where ζj,i (the jth term of the vector ζi) and νi are parameters of the corre-
lation function at the ith output. νi = 1 gives an Ornstein-Uhlenbeck process
which produces continuous paths but not very smooth. The case νi = 2 pro-
duces infinity differentiable paths. Therefore the parameter νi is related to the
smoothness of the function in xj coordinates. As it is seen in Eq. (9), the cor-
relation function is 1 when xj = xh

j and its value reduces as the untried point
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xj is positioned further away from the hth design point xh
j . Since the predictor

is unbiased at the observation point, a high level of confidence in the predic-
tion of the outputs for the points which are close to the design samples can
be achieved. The parameter ζj,i controls the importance of the jth component.
The calculation of correlation parameters is explained in detail in [14].

4.2.1 Optimal Sampling for the Kriging predictor

In many applications the maximum or minimum of the fitted surfaces are of
interest and therefore it is beneficial to use an optimal sampling method in a
way that samples are mostly taken from the regions around maximum/minimum
values of the function. It is assumed that firstly ns samples are taken from the
space of parameters variations using Central Composite Design [17]. Then an
estimate of the minimum/maximum value of the function is calculated based
on the available samples as follows:

ymax/min = max/min
(

y1, y2, ..., yns

)

(10)

As mentioned in section 4.2, the Kriging predictor at any point can be con-
sidered as a random variable given by the mean standard error. Viewed in
this way, a probability can be calculated that the value at any point will be
lower than the current minimum or upper than the current maximum. The ex-
pected improvement function (EIF) is then computed by weighting the possible
improvements by these probability densities and is written as [14]

E [I (x)] = (fmin − ȳ)Φ

(

fmin − ȳ

s

)

+ sφ

(

fmin − ȳ

s

)

(11)

E [I (x)] = (ȳ − fmax)

(

1− Φ

(

fmax − ȳ

s

))

+ sφ

(

fmax − ȳ

s

)

(12)

where E is Expected value, ȳ is the mean value of Kriging predictor, Φ is
the Gaussian cumulative distribution function, φ is the Gaussian probability
distribution function, s is root of mean square error, fmax is maximum value
of mean value of the Kriging predictor and fmin is the minimum value of mean
value of the Kriging predictor. The expected improvement function (EIF) is
calculated at all the points of the parameter space and the next samples are
taken from the point having maximum EIF. The procedure continues until the
maximum EIF falls below a specified threshold.

5. Results of NLR model

The effect of variation of 6 parameters on the response of 5 Interesting Quantities
(IQs) for a typical ”1-Cosine” gust is studied in this paper. The centre of
gravity position behind nose of m.a.c. in wing chords cxcg, half aircraft mass
m, airspeed V ,altitude alt, half moment of inertia I and gust length Lg are
assumed to be varied in the ranges shown in Table 2.

The output data are considered to be the maximum and minimum values
of load factor, wing root shear force, wing root bending moment, wing root
torsion moment and tail shear force. Two Meta models (RBF and Kriging)
were constructed with the 6 input parameters (explained in Table 2) and the
10 output responses (explained in Table 2). As shown in the following sections
different sampling techniques are used to construct the meta-models.

5.1 RBF Results

Two DOE techniques were evaluated for the definition of the sample points-Full
Factorial and Latin Hypercube. A cubic RBF was calculated throughout. For
the results shown here, the Factorial DOE approach used the levels defined in
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Parameter Description Min Max Levels

cxcg cg position in chord 0.1 0.2 3
m aircraft mass (kg) 15000 25000 3
V airspeed (TAS, m/s) 50 220 3
alt altitude (m) 0 11000 4
H Gust gradient (m) 9 107 5
I Inertia term (kg.m2) 0.3e6 1.3e6 3

Table 2: The DOE adopted for gust re-
sponse metamodelling. The selected DOE
corresponds to a total number of samples
equal to 1800.

Description R RMSE R
Description % Factorial % LHS % LHS

IQ1 99.69 11.423 99.9
IQ2 99.59 8.860 99.83
IQ3 98.987 7.675 98.91
IQ4 99.04 8.944 99.47
IQ5 98.47 9.771 98.02
IQ6 99.11 7.518 99.2
IQ7 98.995 7.199 98.88
IQ8 99.18 9.821 99.44
IQ9 98.68 13.501 99.44
IQ10 98.16 8.564 98.33
where:
IQ1: Max CoG Load Factor
IQ2: Min CoG Load Factor
IQ3: Max Wing Root Shear Force
IQ4: Min Wing Root Shear Force
IQ5: Max Wing Root Bending Moment
IQ6: Min Wing Root Bending Moment
IQ7: Max Wing Root Torsion Moment
IQ8: Min Wing Root Torsion Moment
IQ9: Max Tail Root Shear Force
IQ10: Min Tail Root Shear Force

Table 3: Correlation Factor Re-
sults for Factorial (1800) and Latin
Hypercube (600) RBF fits.

Table 2 with 1800 samples, whereas the LHS method used only 600 samples
taken at 10 levels. Table 3 shows that good results can be obtained using
relatively few test samples.

Figures 7 and 8 show correlation plots and response surfaces for the RBF-
LHS fits. The quality of the fits is still good, although (understandably) the
accuracy does start to degrade as the number of test points reduces.

5.2 Kriging Results

A generalised Kriging Meta model was constructed with the 6 input parameters
and the 10 output responses introduced in section 5.. Firstly three equally-
spaced points are taken for each of cxcg, m, V , alt and 10 points for Lg (note
that for this analysis the inertia term was taken as constant), resulting in the
total of 810 samples. The variations of each output parameters in terms of
variation of two input parameters (while the other three parameters are fixed
at their mean values) were plotted and it was observed that there is a good
agreement between the true surfaces and those surfaces obtained by Kriging
predictor. For example, the variation of maximum wing root bending moment
versus gust length and air velocity and the variation of minimum wing root
torsion moment versus gust length and altitude are shown in Figures 9 and 10.
The purpose of this part of work was to obtain a meta-model which is capable
of representing the true values of 10 IQs within the whole space of variation for
the input parameters. Therefore 810 samples were used to achieve this goal.
However, if only maximum/minimum values of IQs are sought then the optimal
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Figure 7: Correlation
Plots for RBF-LH (600)
results.
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Load Factor Max: true data and RBF approximation
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For LH 600 Sample Case.
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Figure 9: Maximum
wing root bending mo-
ment versus gust length
and air velocity.
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sampling techniques may be used. In this case the optimal sampling method
selected only 179 samples from the space of parameters variations, less then
25% of the previous sample size. The variation of maximum wing root torsion
moment and minimum wing root shear force versus gust length and air velocity
are shown in Figures 11 and 12. As it can be seen in the figures, the meta model
constructed using optimal sampling is not a good global fit of the true function
but the accuracy of the fit is significantly improved around the region with global
maximum/minimum IQs. The optimisation results using the Kriging predictor
presented in the next section show the advantage of using optimal sampling in
finding the maximum and minimum values of IQs.

6. Optimization Approaches

In an effort to identify accurately the largest maximum and minimum values of
the IQ responses for different flight conditions and configurations of the NLR
model, the worst case approach was followed making use of a range of optimiza-
tion methods. Taking into account that five gust output loads of the NLR model
were considered for both the largest positive and negative values, ten separate
optimization problems had to be solved.

All the worst case scenarios were solved using four alternative optimiza-
tion methods. Three built-in optimizers of the ModelCenter software were in-
voked including a Hill-Climbing algorithm (Gradient Method) [19], an Evolu-
tionary Algorithm (Darwin Method) and a hybrid approach (Design Explorer)
which combines efficiently surrogate modeling and a gradient-based optimization
method [19]. Moreover, the Bacterial Foraging Optimization Algorithm, which
was used recently for aeroelastic tailoring [10], was also applied. The solution
parameters of the Darwin Method were selected to be equivalent with the pa-
rameters of the BFO algorithm, corresponding to 20 genes and 100 generations.
Due to the smooth shape of the search space, the gradient-based algorithms
managed to converge towards the solution within few iterations in comparison
with the bio-inspired methods, which used up all the iterations. The Gradient
Method converged within 140 iterations in average for each worst gust case,
while the Design Explorer converged within 75 iterations.

The exception to this pattern was the maximization case for the wing root
torsion moment at which the evolutionary algorithms converged to the global
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Figure 10: Minimum
wing root torsion moment
versus gust length and
altitude.
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Figure 12: Minimum
wing root shear force
versus gust length and air
velocity.
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Table 4: Optimiza-
tion results for the
worst gust cases of the
NLR model.

cxcg m [kg] Iy [kgm2] Lg [m] IQ

Load Max 0.2 15000.0 1300000.0 145.75 2.64
Factor [-] Min 0.1 15000.0 1300000.0 210.98 -3.19
Wing Root Max 0.1 25000.0 1137481.2 214.0 381872.0
Shear Force [N] Min 0.2 25000.0 1300000.0 117.21 -339064.5
Wing Root Bending Max 0.1 25000.0 1170360.0 214.0 2539965.5
Moment [Nm] Min 0.2 25000.0 1300000.0 98.91 -2392809.0
Wing Root Torsion Max 0.2 22880.0 300000.0 19.3 177276.3
Moment [Nm] Min 0.1 25000.0 1130463.8 214.0 -188652.1
Tail Root Max 0.1 25000.0 1300000.0 177.65 52113.8
Shear Force [N] Min 0.2 25000.0 1300000.0 79.8 -39088.0

optimum, while the gradient-based methods were trapped in a local maximum.

The best results obtained from the four optimization methods are summa-
rized in Table 4. It is worth mentioning that for almost all the worst cases
of the IQs (maximum and minimum) the first five design variables and more
specifically the centre of gravity position, the half aircraft mass, the half aircraft
moment of inertia, the true airspeed and the altitude reached the upper or lower
limits. Furthermore, the true airspeed and the altitude were found to be 220
m/s and the sea level, respectively, for all the examined cases i.e. at the highest
dynamic pressure. Additionally, the gust wavelength that leads to the largest
values of the IQs responses was significantly different not only for the maximum
and minimum cases of each quantity but as well as among all the quantities, as
depicted more clearly at Figures 13 and 14. Finally, except from the load factor
case and the wing root torsion moment case, the value of the maximum IQs was
found to be larger than the corresponding absolute minimum value.

7. Genetic Algorithm Approaches

Genetic Algorithms attempt to mimic the Darwinian theory of natural selection,
which is based upon the traits of the most successful animals being passed
onto future generations. In an optimization setting [11], the characteristics
of the best solutions from a range of initial estimates (genes) are passed onto
subsequent iterations via a series of mathematical operators, which is repeated
until convergence is achieved.
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Figure 13: Gust wave-
length for the worst gust
cases (Max) using differ-
ent optimization methods.

Figure 14: Gust wave-
length for the worst gust
cases (Min) using different
optimization methods.

7.1 Binary Genetic Algorithm (BGA)

A common modeling of the genes parameters is achieved using a binary represen-
tation. Randomness is introduced via the application of a mutation, translation
and crossover function as well as the inclusion of new blood solutions at each
new iteration. An elitism parameter is also introduced.

Here, the binary representation of the variables and its subdivisions are listed
in Table 5. For the implementation of the algorithm, a gene pool of 20 genes
was used with the 2 best genes saved and 2 new-blood genes introduced each
generation. A 90% probability of crossover, 10% probability of mutation, and
a 20% likelihood of translation was used to generate each new generation. The
optimization process was performed 10 times for all the different IQs. The best
gene from each run is displayed in Figure 15 and the overall results are tabulated
in Table 6 to Table 10 (Note: IQs are defined in Table 3).

Apart for the wing root bending moment, all the best solution have converged
to the same value of the IQ under examination. The worst condition for load
factor and the wing root torsion occur at sea level, maximum speed and with
minimum weight. The difference is in the location of the centre of gravity. The
load factor requires for the CoG to be as further aft as possible, while the wing
root torsion moment the CoG is located as further forward as possible. The

Variable Min Max Divisions

cxcg 0.1 0.2 16
Mass 15000 25000 16
Airspeed 50 330 16
Altitude 0 11000 16
Gust length 18 214 16

Table 5: Variable ranges and divisions (BGA).
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Figure 15: BGA Opti-
misation Trends.

Table 6: BGA
Optimisation Re-
sult for Load Fac-
tor (sea level).

Run cxcg m V IQ1 IQ2 IQ3 IQ4 IQ5 IQ6 IQ7 IQ8 IQ9 IQ10 Gust length
kg m/s ×105 ×105 ×106 ×106 ×105 ×105 ×104 ×104 max min

1 0.119 15000 330 3.72 -4.47 3.8259 -3.1275 2.8623 -2.4258 2.5781 -2.7630 7.3208 -4.5004 20.73 53.22
2 0.119 15000 330 3.72 -4.47 3.8259 -3.1275 2.8623 -2.4258 2.5781 -2.7630 7.3208 -4.5004 20.73 53.22
3 0.119 15000 330 3.72 -4.47 3.8259 -3.1275 2.8623 -2.4258 2.5781 -2.7630 7.3208 -4.5004 20.73 53.22
4 0.190 15000 330 3.74 -4.45 3.7983 -3.1935 2.8079 -2.4708 2.5782 -2.7508 7.2902 -4.4764 20.73 52.79
5 0.103 15000 330 3.71 -4.46 3.8284 -3.1120 2.8753 -2.4153 2.5779 -2.7658 7.3320 -4.6316 20.73 53.44
6 0.103 15000 330 3.71 -4.46 3.8284 -3.1120 2.8753 -2.4153 2.5779 -2.7658 7.3320 -4.6316 20.73 53.44
7 0.180 15000 330 3.74 -4.46 3.8042 -3.1848 2.8154 -2.4650 2.5782 -2.7524 7.3020 -4.4207 20.73 53.66
8 0.119 15000 330 3.72 -4.47 3.8259 -3.1275 2.8623 -2.4258 2.5781 -2.7630 7.3208 -4.5004 20.73 53.22
9 0.183 15000 330 3.74 -4.46 3.8024 -3.1877 2.8129 -2.4669 2.5782 -2.7519 7.2984 -4.4391 20.73 53.22
10 0.103 15000 330 3.71 -4.46 3.8284 -3.1120 2.8753 -2.4153 2.5779 -2.7658 7.3320 -4.6316 20.73 53.44

Table 7: BGA
Optimisation
Result for Wing
Root Shear Force
(sea level).

Run cxcg m V IQ1 IQ2 IQ3 IQ4 IQ5 IQ6 IQ7 IQ8 IQ9 IQ10 Gust length
kg m/s ×105 ×105 ×106 ×106 ×105 ×105 ×104 ×104 max min

1 0.158 19921 330 2.84 -3.60 4.8605 -3.8708 3.3359 -2.7681 2.5823 -2.7256 8.1900 -4.9463 52.36 35.24
2 0.164 25000 330 2.27 -3.00 5.6155 -4.3357 3.6793 -2.9741 2.5822 -2.7079 8.7311 -5.4662 52.14 35.03
3 0.164 25000 330 2.27 -3.00 5.6155 -4.3357 3.6793 -2.9741 2.5822 -2.7079 8.7311 -5.4662 52.14 35.03
4 0.164 25000 330 2.27 -3.00 5.6155 -4.3357 3.6793 -2.9741 2.5822 -2.7079 8.7311 -5.4662 52.14 35.03
5 0.138 25000 330 2.27 -3.01 5.6257 -4.3033 3.6938 -2.9560 2.5829 -2.7114 8.7545 -5.6847 52.14 35.03
6 0.119 25000 330 2.26 -3.01 5.6287 -4.2786 3.7111 -2.9423 2.5834 -2.7141 8.7897 -5.8476 52.79 35.46
7 0.190 25000 330 2.28 -2.99 5.5962 -4.3764 3.6671 -2.9919 2.5815 -2.7045 8.6984 -5.5267 52.36 35.24
8 0.164 25000 330 2.27 -3.00 5.6155 -4.3357 3.6793 -2.9741 2.5822 -2.7079 8.7311 -5.4662 52.14 35.03
9 0.164 25000 330 2.27 -3.00 5.6155 -4.3357 3.6793 -2.9741 2.5822 -2.7079 8.7311 -5.4662 52.14 35.03
10 0.116 25000 330 2.26 -3.01 5.6286 -4.2745 3.7138 -2.9399 2.5834 -2.7145 8.7967 -5.8732 53.87 35.68

Table 8: BGA
Optimisation
Result for Wing
root bending
Moment (sea
level).

Run cxcg m V IQ1 IQ2 IQ3 IQ4 IQ5 IQ6 IQ7 IQ8 IQ9 IQ10 Gust length
kg m/s ×105 ×105 ×106 ×106 ×105 ×105 ×104 ×104 max min

1 0.1 25000 330 2.26 -3.01 5.6253 -425376 3.7256 -2.9283 2.5838 -2.7168 8.8286 -6.0229 49.11 30.04
2 0.151 25000 330 2.27 -3.01 5.6217 -431963 3.6835 -2.9651 2.5825 -2.7097 8.7458 -5.5730 49.32 30.04
3 0.1 19920.6 330 2.82 -3.60 4.9039 -380391 3.3676 -2.7288 2.5834 -2.7345 8.2860 -5.4316 49.11 30.04
4 0.1 25000 330 2.26 -3.01 5.6253 -425376 3.7256 -2.9283 2.5838 -2.7168 8.8286 -6.0229 49.11 30.04
5 0.112 25000 330 2.26 -3.01 5.6283 -4.2704 3.7163 -2.9376 2.5835 -2.7150 8.8034 -5.9004 49.76 30.04
6 0.1 25000 330 2.26 -3.01 5.6253 -4.2537 3.7256 -2.9283 2.5838 -2.7168 8.8286 -6.0229 49.11 30.04
7 0.1 25000 187.7 1.43 -1.83 3.1861 -2.9147 2.1198 -2.0871 1.3097 -1.5849 3.9946 -2.5989 48.89 29.83
8 0.1 25000 330 2.26 -3.01 5.6253 -4.2537 3.7256 -2.9283 2.5838 -2.7168 8.8286 -6.0229 49.11 30.04
9 0.1 22460.3 330 2.51 -3.28 5.2976 -4.0526 3.5662 -2.8394 2.5838 -2.7244 8.5903 -5.7577 49.11 30.04
10 0.1 25000 330 2.26 -3.01 5.6253 -4.2537 3.7256 -2.9283 2.5838 -2.7168 8.8286 -6.0229 49.11 30.04
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Run cxcg m V IQ1 IQ2 IQ3 IQ4 IQ5 IQ6 IQ7 IQ8 IQ9 IQ10 Gust length
kg m/s ×105 ×105 ×106 ×106 ×105 ×105 ×104 ×104 max min

1 0.1 15000 330 3.71 -4.46 3.8288 -3.1088 2.8778 -2.4132 2.5779 -2.7663 7.3380 -4.6520 4.70 4.70
2 0.1 15000 330 3.71 -4.46 3.8288 -3.1088 2.8778 -2.4132 2.5779 -2.7663 7.3380 -4.6520 4.70 4.70
3 0.1 15000 330 3.71 -4.46 3.8288 -3.1088 2.8778 -2.4132 2.5779 -2.7663 7.3380 -4.6520 4.70 4.70
4 0.1 15000 330 3.71 -4.46 3.8288 -3.1088 2.8778 -2.4132 2.5779 -2.7663 7.3380 -4.6520 4.70 4.70
5 0.1 15000 330 3.71 -4.46 3.8288 -3.1088 2.8778 -2.4132 2.5779 -2.7663 7.3380 -4.6520 4.70 4.70
6 0.1 15000 330 3.71 -4.46 3.8288 -3.1088 2.8778 -2.4132 2.5779 -2.7663 7.3380 -4.6520 4.70 4.70
7 0.1 15000 330 3.71 -4.46 3.8288 -3.1088 2.8778 -2.4132 2.5779 -2.7663 7.3380 -4.6520 4.70 4.70
8 0.1 17539.6 330 3.19 -3.98 4.4453 -3.5112 3.1487 -2.5978 2.5820 -2.7473 7.8964 -5.0971 4.70 4.70
9 0.1 15000 330 3.71 -4.46 3.8288 -3.1088 2.8778 -2.4132 2.5779 -2.7663 7.3380 -4.6520 4.70 4.70
10 0.106 15000 330 3.71 -4.46 3.8280 -3.1151 2.8728 -2.4174 2.5779 -2.7652 7.3255 -4.6103 4.70 4.70

Table 9: BGA
Optimisation
Result for Wing
Root Torsion
Moment (sea
level).

Run cxcg m V IQ1 IQ2 IQ3 IQ4 IQ5 IQ6 IQ7 IQ8 IQ9 IQ10 Gust length
kg m/s ×105 ×105 ×106 ×106 ×105 ×105 ×104 ×104 max min

1 0.151 25000 330 2.27 -3.01 5.6217 -4.3196 3.6835 -2.9651 2.5825 -2.7097 8.7458 -5.5730 38.28 60.15
2 0.1 22460 330 2.51 -3.28 5.2976 -4.0526 3.5662 -2.8394 2.5838 -2.7244 8.5903 -5.7577 38.06 60.15
3 0.1 25000 330 2.26 -3.01 5.6253 -4.2537 3.7256 -2.9283 2.5838 -2.7168 8.8286 -60229 38.28 60.15
4 0.151 25000 330 2.27 -3.01 5.6217 -4.3196 3.6835 -2.9651 2.5825 -2.7097 8.7458 -5.5730 38.28 60.15
5 0.1 25000 330 2.26 -3.01 5.6253 -4.2537 3.7256 -2.9283 2.5838 -2.7168 8.8286 -6.0229 38.28 60.15
6 0.1 25000 330 2.26 -3.01 5.6253 -4.2537 3.7256 -2.9283 2.5838 -2.7168 8.8286 -6.0229 38.28 60.15
7 0.1 25000 330 2.26 -3.01 5.6253 -4.2537 3.7256 -2.9283 2.5838 -2.7168 8.8286 -6.0229 38.28 60.15
8 0.1 22460 330 2.51 -3.28 5.2976 -4.0526 3.5662 -2.8394 2.5838 -2.7244 8.5903 -5.7577 38.06 60.15
9 0.112 25000 330 2.26 -3.01 5.6283 -4.2704 3.7163 -2.9376 2.5835 -2.7150 8.8034 -5.9004 38.71 60.59
10 0.125 25000 330 2.26 -3.01 5.6283 -4.2869 3.7057 -2.9469 2.5832 -2.7132 8.7741 -5.7950 38.49 60.37

Table 10: BGA
Optimisation Re-
sult for Tail Root
Shear Force (sea
level).

other three IQs occur at sea level, maximum airspeed but at the maximum
allowable weight. The worst condition for the tail shear force and wing root
bending is achieved with the CoG as further forward as possible. The wing root
shear force appears to achieve its worst condition with different CoG positions.

7.2 Continuous Genetic Algorithm (CGA)

Continuous, or real number, genetic algorithms work in a similar way to the
BGA described above [11]. However, as the name suggests, the primary dif-
ference is in the variable representation of each gene. In CGA, the genes are
represented using real numbers and consequently a re-definition of the mutation
and crossover operators must be employed.

The mutation operator for CGA requires the selection of a number of vari-
ables on the basis of a mutation rate to be replaced by a new random variable.
The best gene is left untouched, in order to give an element of elitism to the
generation.

As for the BGA, a pair of genes is selected to create any offspring. For the
BGA, if two points are selected and swapped, as here:

offsping1 =
[

p11 p12 p13 p14 p15 p16 ... p1N
]

(13)

offsping2 =
[

p21 p22 p23 p24 p25 p26 ... p2N
]

(14)

where N is the number of genes. By applying crossover (randomly chosen to
occur after the second cell), the following offspring are obtained

offsping1 =
[

p11 p12 p23 p24 p25 p16 ... p1N
]

(15)

offsping2 =
[

p21 p22 p23 p24 p15 p26 ... p2N
]

(16)

It can be seen that no new information is passed to the offspring. However,
for the CGA, new genetic material is introduced into the crossover process via
the use of a blending function β, such that:

offsping1 = parent1 − β (parent1 − parent2) (17)

where β is a random number between 0 and 1. In this application, a population
of 20 genes was chosen, with the mutation rate set at 0.2 and the crossover rate
at 0.5. The optimization process was performed 10 times for all the different
IQs. The best gene from each run is displayed in Figure 16 and the overall
results are tabulated in Table 11 to Table 15. It is evident from Figure 16 that
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Figure 16: CGA Opti-
misation Trends.

Table 11:

CGA Op-
timisation
Result
for Load
Factor.

Run cxcg m V alt IQ1 IQ2 IQ3 IQ4 IQ5 IQ6 IQ7 IQ8 IQ9 IQ10 Gust length
kg m/s m ×105 ×105 ×106 ×106 ×105 ×105 ×104 ×104 max min

1 0.118 15179.4 328.3 59.2 3.63 -4.38 3.8377 -3.1309 2.8528 -2.4220 2.5513 -2.7091 7.2808 -4.4668 29.18 53.22
2 0.122 15001.2 328.7 186.0 3.63 -4.38 3.7444 -3.0656 2.7973 -2.3847 2.5050 -2.6541 7.1371 -4.3364 30.91 54.74
3 0.138 15006.3 327.7 43.2 3.68 -4.42 3.7869 -3.1207 2.8194 -2.4222 2.5555 -2.7076 7.2340 -4.2789 36.11 61.24
4 0.135 15036.4 329.7 77.4 3.68 -4.43 3.8003 -3.1242 2.8280 -2.4224 2.5485 -2.7185 7.2630 -4.3289 35.46 59.94
5 0.140 15029.2 328.6 48.0 3.68 -4.42 3.7988 -3.1306 2.8253 -2.4276 2.5563 -2.7170 7.2585 -4.2833 36.76 62.32
6 0.131 15110.3 328.9 120.1 3.63 -4.38 3.7981 -3.1155 2.8236 -2.4141 2.5304 -2.6868 7.2261 -4.3333 33.94 58.21
7 0.127 15190.4 328.6 1.4 3.66 -4.41 3.8633 -3.1614 2.8657 -2.4420 2.5740 -2.7398 7.3403 -4.4426 32.43 56.26
8 0.184 15194.4 325.3 107.8 3.60 -4.32 3.7458 -3.1574 2.7651 -2.4381 2.5241 -2.6336 7.0780 -4.3986 53.66 87.67
9 0.155 15197.6 329.8 115.6 3.63 -4.37 3.8226 -3.1592 2.8254 -2.4400 2.5348 -2.6966 7.2652 -4.2668 41.74 69.47
10 0.105 15061.4 327.4 192.9 3.59 -4.34 3.7510 -3.0508 2.8059 -2.3727 2.4990 -2.6364 7.1155 -4.4440 27.44 48.67

the optimization has failed to converge to a unique solution for any of the IQs.
This indicates that more iterations are required in order to achieve convergence.
Despite this limitation the CGA solution follow the same trends as for the BGA.

8. Optimisation using the Kriging Predictor

The Kriging meta-model constructed using optimal sampling method (section 5.2)
can be used to find the maximum and minimum values of the 10 IQs with less
computational time demand. The constrained optimisation technique based
on Newton’s method, available in MATLAB (”fmincon”), is exploited in this
case. The optimisations are also carried out on the true function for comparison

Table 12:

CGA Op-
timisation
Result
for Wing
Root
Shear
Force.

Run cxcg m V alt IQ1 IQ2 IQ3 IQ4 IQ5 IQ6 IQ7 IQ8 IQ9 IQ10 Gust length
kg m/s m ×105 ×105 ×106 ×106 ×105 ×105 ×104 ×104 max min

1 0.100 24879.7 324.3 362.3 2.14 -2.87 5.3317 -4.0543 3.5346 -2.7976 2.43206 -2.5434 8.2394 -5.5584 49.32 23.76
2 0.101 24786.6 327.7 20.4 2.26 -3.01 5.5670 -4.2060 3.6766 -2.9031 2.5691 -2.6763 8.6823 -5.9025 49.54 49.54
3 0.108 24938.9 328.6 163.4 2.22 -2.96 5.5132 -4.1713 3.6378 -2.8794 2.5182 -2.6193 8.5616 -5.7775 51.71 25.50
4 0.116 24987.5 328.3 104.4 2.23 -2.97 5.5481 -4.2078 3.6498 -2.9007 2.5388 -2.6412 8.6117 -5.7452 54.74 23.55
5 0.112 24835.0 328.6 4.3 2.27 -3.01 5.5909 -4.2397 3.6875 -2.9219 2.5775 -2.6938 8.7200 -5.8528 53.22 24.85
6 0.108 24832.4 324.0 133.3 2.20 -2.94 5.4518 -4.1557 3.6076 -2.8603 2.5142 -2.5991 8.4622 -5.6510 51.92 25.50
7 0.111 24922.7 328.3 110.5 2.23 -2.97 5.5378 -4.1947 3.6494 -2.8937 2.5369 -2.6397 8.5989 -5.7791 53.01 24.85
8 0.107 24982.1 327.0 288.9 2.17 -2.90 5.4262 -4.1111 3.5802 -2.8346 2.4670 -2.5728 8.3925 -5.6485 51.49 25.50
9 0.122 24852.3 329.8 5.7 2.27 -3.02 5.6045 -4.2678 3.6952 -2.9374 2.5805 -2.7085 8.7538 -5.7950 56.47 22.25
10 0.112 24941.1 329.7 140.3 2.23 -2.97 5.5380 -4.1987 3.6578 -2.8952 2.5299 -2.6441 8.6300 -5.7900 53.22 24.85
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Run cxcg m V alt IQ1 IQ2 IQ3 IQ4 IQ5 IQ6 IQ7 IQ8 IQ9 IQ10 Gust length
kg m/s m ×105 ×105 ×106 ×106 ×105 ×105 ×104 ×104 max min

1 0.106 24755.0 324.2 343.8 2.16 -2.88 5.3239 -4.0602 3.5311 -2.8024 2.4383 -2.5442 8.2408 -5.5120 49.54 22.46
2 0.104 24523.2 329.4 145.0 2.26 -3.01 5.4788 -4.1528 3.6350 -2.8730 2.5274 -2.6395 8.5919 -5.8041 48.89 20.73
3 0.100 24763.1 329.1 7.3 2.27 -3.02 5.5847 -4.2251 3.6993 -2.9142 2.5785 -2.7024 8.7630 -5.9633 47.81 18.56
4 0.100 24898.8 326.5 71.7 2.23 -2.97 5.5373 -4.1801 3.6498 -2.8835 2.5459 -2.6350 8.5982 -5.8566 47.59 18.35
5 0.102 24898.1 327.7 20.2 2.25 -3.00 5.5812 -4.2152 3.6821 -2.9073 2.5691 -2.6761 8.6896 -5.9077 48.24 19.65
6 0.100 24715.2 325.8 142.5 2.22 -2.96 5.4639 -4.1347 3.6108 -2.8530 2.5171 -2.6027 8.4900 -5.7662 47.59 18.13
7 0.103 24947.9 329.6 64.8 2.25 -2.99 5.5799 -4.2204 3.6916 -2.9089 2.5580 -2.6796 8.7276 -5.9237 48.46 20.08
8 0.131 24849.7 326.9 68.8 2.24 -2.98 5.5292 -4.2300 3.6423 -2.9070 2.5475 -2.6380 8.5960 -5.5893 58.21 20.30
9 0.101 24775.7 329.6 108.0 2.25 -2.99 5.5333 -4.1871 3.6670 -2.8908 2.5419 -2.6596 8.6678 -5.8856 48.02 19.00
10 0.105 24985.8 325.8 17.4 2.23 -2.97 5.5687 -4.2149 3.6699 -2.8992 2.5636 -2.6494 8.6482 -5.8455 49.32 21.81

Table 13:

CGA Op-
timisation
Result for
Wing root
bending
Moment.

Run cxcg m V alt IQ1 IQ2 IQ3 IQ4 IQ5 IQ6 IQ7 IQ8 IQ9 IQ10 Gust length
kg m/s m ×105 ×105 ×106 ×106 ×105 ×105 ×104 ×104 max min

1 0.110 15107.6 327.1 178.0 3.58 -4.33 3.7648 -3.0665 2.8098 -2.3818 2.5037 -2.6383 7.1329 -4.4203 26.80 51.49
2 0.100 15209.7 328.8 77.0 3.62 -4.37 3.8451 -3.1165 2.8695 -2.4110 2.5461 -2.7103 7.2796 -4.6053 25.71 48.02
3 0.105 15385.5 327.2 17.3 3.59 -4.34 3.9014 -3.1620 2.8895 -2.4357 2.5643 -2.7155 7.3419 -4.6004 26.36 49.76
4 0.109 15011.8 324.2 58.7 3.62 -4.36 3.7549 -3.0690 2.8061 -2.3869 2.5385 -2.6555 7.1306 -4.4118 26.80 51.27
5 0.112 15284.4 327.6 55.8 3.60 -4.35 3.8623 -3.1412 2.8656 -2.4253 2.5509 -2.7021 7.2942 -4.5187 26.80 52.14
6 0.100 15972.3 325.1 3.6 3.44 -4.20 4.0308 -3.2449 2.9450 -2.4707 2.5637 -2.6883 7.4320 -4.7057 25.71 48.02
7 0.104 15024.8 329.0 221.7 3.60 -4.36 3.7426 -3.0430 2.8068 -2.3684 2.4925 -2.6433 7.1152 -4.4592 26.36 49.32
8 0.118 15007.9 329.6 167.4 3.64 -4.39 3.7615 -3.0735 2.8146 -2.3894 2.5145 -2.6764 7.1750 -4.3969 26.15 53.87
9 0.104 15429.6 328.8 55.2 3.58 -4.34 3.9111 -3.1647 2.8965 -2.4353 2.5547 -2.7179 7.3551 -4.6298 26.36 49.32
10 0.100 15353.9 321.2 77.9 3.50 -4.25 3.7967 -3.0926 2.8200 -2.3889 2.5220 -2.6036 7.0999 -4.4480 25.71 48.01

Table 14:

CGA Op-
timisation
Result for
Wing Root
Torsion
Moment.

purposes. Results obtained from optimisation methods are shown in Table 16.
It can be seen in the table that the optimisation results obtained from Krig-
ing Meta models are in good agreement with their corresponding true values.
The maximum error of Kriging IQs of 6.9 % indicating the accuracy of the
Kriging model around the maximum/minimum points. However the accuracy
can be increased by constructing a new meta-model on a small region around
the optimum point of the parameters (the points obtained from the optimisa-
tion procedure on Kriging meta-model) and repeat the optimisation procedure.
Note that the smaller ranges of parameters variations often lead to better fitted
surfaces. Errors in the optimum parameters shown in Table 16 show that the
optimisations on Kriging model in most cases converge to the true optimum
points (or at least very close to them). However in one case (Maximum wing
root torsion moment) the converged parameter of the aircraft mass using Krig-
ing model is quite far from its true optimum values. This is due to the fact
that this IQ (Maximum wing root torsion moment) is not sensitive to the mass
parameter as the variation of the IQ due to variation of mass over its whole
range (15e3− 25e3 kg) is less than 2%.

9. Conclusions

A number of different Design of Experiments, surrogate modeling and opti-
mization techniques have been applied to ”1-cosine” gust response data from a
simple assumed modes free-free aircraft model with 5 ”interesting quantities”.
It has been shown that using these data sets, it is possible to deduce accurate
surrogate models for the worst case gust loads using relatively few design test
cases compare to a full scale Monte-Carlo investigation. Further investigation
is required to determine the best approach and also the number of test samples
to use. These encouraging initial results will be built upon in future studies
as part of the FFAST FP7 research programme in order to assess whether the
methodologies are applicable to full scale aircraft models with many modes and
nonlinear features, as well as large numbers of ”interesting quantities”.

Run cxcg m V alt IQ1 IQ2 IQ3 IQ4 IQ5 IQ6 IQ7 IQ8 IQ9 IQ10 Gust length
kg m/s m ×105 ×105 ×106 ×106 ×105 ×105 ×104 ×104 max min

1 0.101 24904.9 329.7 64.4 2.25 -3.00 5.5747 -4.2150 3.6923 -2.9063 2.5586 -2.6813 8.7329 -5.9476 30.69 4.70
2 0.102 24766.0 329.2 28.8 2.27 -3.02 5.5729 -4.2165 3.6905 -2.9090 2.5703 -2.6915 8.7359 -5.9367 31.13 4.70
3 0.104 24895.1 329.6 78.9 2.25 -3.00 5.5656 -4.2113 3.6835 -2.9040 2.5529 -2.6733 8.7079 -5.9040 31.99 4.70
4 0.108 24179.5 327.8 144.5 2.29 -3.04 5.4185 -4.1144 3.5909 -2.8544 2.5226 -2.6182 8.4791 -5.6954 33.73 4.70
5 0.104 24995.5 323.1 17.4 2.21 -2.95 5.5253 -4.2052 3.6530 -2.8892 2.5540 -2.6298 8.5771 -5.7673 31.99 4.70
6 0.100 24833.4 329.5 34.9 2.27 -3.01 5.5802 -4.2201 3.6967 -2.9103 2.5690 -2.6926 8.7507 -5.9611 30.48 4.70
7 0.110 24997.4 329.9 160.7 2.22 -2.96 5.5348 -4.1922 3.6572 -2.8907 2.5229 -2.6365 8.6234 -5.8025 34.38 4.70
8 0.104 24941.7 329.9 82.7 2.25 -2.99 5.5718 -4.2168 3.6879 -2.9065 2.5523 -2.6753 8.7196 -5.9104 31.99 4.70
9 0.101 24808.3 322.8 428.3 2.12 -2.85 5.2553 -4.0168 3.4939 -2.7754 2.4034 -2.5175 8.1169 -5.4532 31.13 4.70
10 0.103 24807.4 321.0 37.0 2.21 -2.95 5.4507 -4.1728 3.6160 -2.8720 2.5390 -2.6094 8.4740 -5.6771 31.78 4.70

Table 15:

CGA Op-
timisation
Result
for Tail
Root Shear
Force.
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Table 16: True
and predicted maxi-
mum/minimum values
of 5 IQs and their
corresponding input
parameters.

cxcg m (kg) V (m/s) alt (m) Iy (N.m2) Lg (m) IQ Error IQ (%)

IQ1 True 0.2 15e3 220 0 8.16e5 133.82 2.06
Kriging 0.17 15e3 220 0 8.17e5 133.12 2.02 -2.14
Errors in -16.0 0 0 0 0.03 -0.53

parameters (%)
IQ2 True 0.10 16e3 220 0 1.3e6 214 -2.40

Kriging 0.109 15e3 220 0 1.22e6 205.9 -2.57 6.9
Errors in 9.3 -8.7 0 0 -5.84 -3.79

parameters (%)
IQ3 True 0.10 25e3 220 0 1.14e6 214.00 3.05e5

Kriging 0.104 25e3 220 0 1.15e6 212.48 3.06e5 0.11
Errors in 4.4 0 0 0 1.31 -0.71

parameters (%)
IQ4 True 0.2 25e3 220 0 1.3e6 117.21 -2.71e5

Kriging 0.13 25e3 220 0 1.12e3 122.73 -2.66e5 1.88
Errors in 32.6 0 0 0 13.92 -4.71

parameters (%)
IQ5 True 0.10 25e3 220 0 1.18e6 214 2.03e6

Kriging 0.105 25e3 220 0 1.14e6 209.5 2.04e6 0.31
Errors in 4.86 0 0 0 -2.81 -2.11

parameters (%)
IQ6 True 0.20 25e3 220 0 1.3e6 98.91 -1.91e6

Kriging 0.18 25e3 220 0 1.1e6 93.32 -1.88e6 1.47
Errors in 10.6 0 0 0 13.94 5.65

parameters (%)
IQ7 True 0.10 15e3 220 0 1.3e6 19.57 1.38e5

Kriging 0.10 25e3 220 0 1.3e6 18.0 1.36e5 -0.94
Errors in 0 66.7 0 0 0 -8.01

parameters (%)
IQ8 True 0.10 25e3 220 0 1.13e6 214 -1.51e5

Kriging 0.10 24.9e3 220 0 1.18e6 214 -1.51e5 -0.06
Errors in 0 -0.22 0 0 4.26 0

parameters (%)
IQ9 True 0.10 25e3 220 0 1.3e6 177.65 4.17e4

Kriging 0.12 25e3 220 0 1.1e6 152.86 4.12e4 0.91
Errors in 15.8 0 0 0 15.6 13.96

parameters (%)
IQ10 True 0.20 25e3 220 0 1.3e6 79.8 -3.12e4

Kriging 0.18 25e3 220 0 1.26e6 72.77 -3.0e4 -3.99
Errors in -8.98 0 0 0 -3.44 -8.80

parameters (%)
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