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Abstract

The fictitious-mass modal coupling method is extended to include sensitivity analysis
of system-level performance to parametric changes in sub-system structural proper-
ties. With fictitious masses loading the interface coordinates, the sub-system normal
modes can serve as a fixed set of generalized coordinates. The resulting model is very
efficient and of high-accuracy. The extended method is demonstrated by the eval-
uation of deterministic and stochastic acceleration response parameters of a typical
vehicle traveling over a rough road, and their derivatives with respect to local struc-
tural variations. The vehicle is divided into several structural components represented
by separate normal modes produced with fictitious masses loading their interface co-
ordinates. The examined variables are stiffness and damping values of component
interconnection elements, and natural frequencies of the separate components.

1. Introduction

Vibration analysis of vehicle structures require the construction of detailed fi-
nite element models for the various subsystems, and their assembly for the
finite-element model of the entire vehicle that typically have hundreds of thou-
sands degrees of freedom. To allow reasonable computation in repeated analyses
during the design process, structural dynamic analyses are performed by using
the modal approach where the displacement vector is assumed to be a linear
combination of a relatively small set of low-frequency natural vibration modes
(typically less than one hundred modes). Numerical efficiency in repeated dy-
namic analyses where parametric variations are made in the structural proper-
ties of one subsystem while the other subsystems remain unchanged calls for
the use of component mode synthesis (CMS) where modal properties of several
substructures are coupled for the generalized equations of motion of the entire
structure.

A comparative overview of some of the leading CMS methods is given in
Ref. [1], where CMS methods are classified according to the interface bound-
ary conditions of the component normal modes. The classification types are
fixed-interface modes, free-interface modes and loaded-interface modes. Hurty
[2] and Craig and Bampton [3] based their fixed-interface formulations on the
assumption that the motion of each component, as part of the entire structure,
is a linear combination of two sets of isolated component modes: 1) a number of
low-frequency fixed-boundary natural vibration modes, and 2) all the static con-
straint modes obtained by imposing a unit displacement on one of the boundary
coordinates, while holding the remaining boundary coordinates fixed. The re-
sulting model contains the necessary near-boundary structural information, but
it might become inefficient when the number of boundary coordinates is large.
It might also be difficult to apply with standard finite-element codes because
it is based on two different analyses, static and dynamic. Other disadvantages
of the CB method are that the resulting model may contain very high natural
frequencies that might cause numerical difficulties in dynamic simulations, and
that it can not be applied with component modes obtained from vibration tests.
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A different approach, which requires only one set of modes with free bound-
ary coordinates, was taken by Goldman [4] and by Hou [5]. These methods were
more convenient because they used natural vibration modes only. However, with
the boundary points unloaded, vital information about the structural deforma-
tions near the boundary is not included in the component modes, which leads to
inaccuracies and slow convergence with the number of component modes. Ben-
field and Hruda [6] loaded the free boundary coordinated with reduced stiffness
and mass matrices of the neighboring substructures, and MacNeal [7] and Rubin
[8] added static attachment modes which are based on static responses to loads
at each interface coordinate. These modifications improved the free-coordinate
results but are more difficult to apply because of the added static modes, and
might be less efficient in modular, multi-configuration cases.

A previous paper in the presented research program [9] dealt with a CMS
procedure that uses fictitious masses [10] to load the interface coordinated when
the normal modes of the separate components are calculated. Ref. [9] extended
previous fictitious-mass techniques [11, 12] to allow three types of interface
connections: rigid, soft and structural links. While rigid connections imply dis-
placement compatibility across the interface, soft connections introduce inter-
face springs. The structural links have their own typically small finite-element
models that retain their discrete coordinates in the coupling equations. The
coupled equations of motion were applied in Ref. [9] to calculations of dy-
namic response of a vehicle to random road excitation. Major advantages of
the fictitious-mass technique are that: a) the component boundary conditions
in the separate normal modes analyses are closer to the actual ones, in the as-
sembled structure, than unloaded or clamped boundaries used in other coupling
methods; and b) it is very effective and robust when used in conjunction with
component vibration tests [13, 14].

The development process of a vehicle system includes the assignment of
requirements for the structural design of the separate subsystems and the in-
terconnection elements to assure favorable system-level vibration performance.
The requirements can be defined in terms of limits on stiffness, mass and damp-
ing properties of discrete elements and/or in terms of modal properties, such as
certain component natural frequencies, that can be verified in vibration tests.
To facilitate an effective establishment of design requirements and an efficient
evaluation of the effects of parametric changes and manufacturing deviations
on system-level performances, it is desired to develop an efficient computational
tool for calculating the sensitivity derivatives of performance parameters with
respect to component structural parameters and natural frequencies. The pur-
pose of the work presented in this paper was to extend the modal coupling
technique of Ref. [9] for calculating such derivatives, and to apply the extended
technique to a benchmark vehicle model.

2. Frequency Response by Modal Coupling

Modal frequency response analysis to an excitation force vector {F (iω)} asso-
ciated with a unit-amplitude input can be performed by solving

[W (iω)] {ξ(iω)} = [φ]
T
{F (iω)} (1)

where [f ] is the matrix of normal modes taken into account, and

[K
E
] = [φ]

T
[KG] [φ] (2)

Where

[KG] =





∑

j

GEj

[

KEj

]



 (3)
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where
[

KEj

]

is the stiffness matrix of an element to which a structural damping
coefficient GEj

is assigned. The modal viscous damping matrix can be calculated
by

[B] = [φ]
T
[BD] [φ] (4)

where [BD] is the discrete-coordinate viscous damping matrix due to viscous
elements. Alternatively, it is often assumed to be diagonal with given modal
damping parameters (see below). The structural matrices in Eq. (1) can accom-
modate all the linear structural modeling options in MSC/NASTRAN, which
uses the normal modes of the entire structural system as generalized coordi-
nates. The structural matrices [M ] and [K ] in Eq. (1) are diagonal in this case,
but the modal damping matrices in Eq. (1) are generally not diagonal. With
this approach, specific structural components and interconnection links cannot
be represented explicitly in the model, and local structural variations usually
require repeated analyses with the entire model. When CMS is used, [M ] and
[K ] become non diagonal, but the reduced-size model can be constructed such
that high-accuracy analyses with local structural variations can be performed
efficiently without returning to the full finite-element model.

The coupling method of Ref. [9] facilitates the coupling of several structural
components interconnected by structural links. The matrices in Eq. (1) are
constructed from the component modes and the interface elements. For the
sake of simplicity, the formulation below assumes two components, A and B,
and one interface link. The generalized displacement vector {ξ} of Eq. (1) is
composed in this case of {ξA}, {ξB} and {uS}, where {ξA} and {ξB} are the
modal displacements with respect to the separate component modes, and {uS} is
the vector of discrete displacements of the structural link. The coupling process
is based on the assumption that the discrete displacements of the coupled system
are, at all times, linear combinations of the separate modes and the structural
links,

{u(t)} = [φ] {ξ(t)} (5)

Where

{u} =























uA

uIA

uB

uIB

uS























, [φ]













φA

φIA

φB

φIB

I













, {ξ} =







ξA
ξB
uS







(6)

where the subscripts IA and IB denote the interface of A and the interface of
B correspondingly, [fA] and [fB ] are the normal modes of components A and B,
calculated with fictitious masses [MFA] and [MFB ] loading their interfaces to the
structural link model; [fIA] and [fIB ] are matrices of the modal displacements
at the interface coordinates of the structural components. As developed in Ref.
[9], the coupled undamped free-vibration equation of motion in this case is





MA +MIA MAB MAS

MT
AB MB +MIB MBS

MT
AS MT

AS M
(1)
SS











ξ̈A
ξ̈B

ü
(1)
S







+





ΩAMA +KIA KAB KAS

KT
AB ΩBMB +KIB KBS

KT
AB KT

BS K
(1)
SS











ξA
ξB

u
(1)
S







= {0}

(7)

Where [MA], [MB ], [ΩAMA] and [ΩBMB ] are the mass and stiffness matrices
of the separate components, where [ΩA] and [ΩB ] are diagonal matrices with
the respective eigenvalues, namely the squared values of the respective natural
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frequencies. The other matrices in Eq. (5) are





MIA MAB MAS

MT
AB MIB MBS

MT
AS MT

BS M
(1)
SS



 =









ϕT
IA

(

M
(1)
AA −MFA

)

ϕIA ϕT
IAM

(1)
ABϕIB ϕT

IAM
(1)
AS

ϕT
IB

(

M
(1)
BB −MFB

)

ϕIB ϕT
IBM

(1)
BS

Sym M
(1)
SS









;





KIA KAB KAS

KT
AB KIB KBS

KT
AS KT

BS K
(1)
SS



 =







ϕT
IAK

(1)
AAϕIA ϕT

IAK
(1)
ABϕIB ϕT

IAK
(1)
AS

ϕT
IBK

(1)
BBϕIB ϕT

IBK
(1)
BS

Sym K
(1)
SS







(8)

where the matrices with the superscript (1) are partitions of the discrete-coordinate
mass and stiffness matrices with subscripts A, B and S relating to component
A, component B and the structural link between them. It should be noticed
that the structural link may have no inner degrees of freedom, which implies an
empty {uS} vector and the elimination of the associated partitions in Eqs. (6)
and (7). However, the direct interconnection matrices between components A
and B may still exist similarly to those of direct “soft” connections. Frequency
response analysis via modal coupling is performed by solving Eq. (1) with {ξ}
replaced by the displacement vector of Eq. (5), and the generalized mass and
stiffness matrices by those of Eq. (5). The other matrices in [W (iω)] of Eq. (1)
are

[B] =







BA + φT
IAB

(1)
AAφIB φT

IAB
(1)
ABφIB φT

IAB
(1)
AS

BB + φT
IAB

(1)
BBφIB φT

IBB
(1)
BS

Sym B
(1)
SS






; (9)

[KE ] =







KEA
φT
AK

(1)
GAA

φB φT
AK

(1)
GAB

φB φT
IAK

(1)
GAS

KEB
+ φT

AK
(1)
GBB

φB φT
IBK

(1)
GBS

Sym K
(1)
GSS






; (10)

where the matrices with the superscript (1) are partitions of the discrete-coordinate
viscous-damping and structural-damping matrices, similarly to the mass and
stiffness terms in Eq. (6). The component modal damping matrices are usually
defined by modal damping parameters, for example

[BA] = 2 [ξA] [MA] [ωA] (11)

where [ξA] and [ωA] are diagonal matrices of the associated modal damping and
natural frequency values. The right hand side of Eq. (1) becomes

{Fi(iω)} = [φ]
T
{Fi(iω)} =







φT
AFA(iω)

φT
BFB(iω)

F
(1)
S (iω)







[MA] [ωA] (12)

Equation (1) with the coupled modal matrices of Eqs. (5) to (9) can be used
directly for dynamic response analysis. Alternatively, one can use Eq. (5) for
calculating the coupled normal modes and then use them to diagonalize [M ]
and [K ], as detailed in Ref. [9]. The eigenvalues [ΩH ] and eigenvectors [ΨH ],
normalized to unit generalized mass, obtained by the normal modes analysis
based on Eq. (5) are used in the diagonalization process. By the substitution

{ξ} = [ΨH ] {ξnew} (13)
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in Eq. (1) and pre-multiplication by [ΨH ]
T
, a matrix equation of motion is ob-

tained for {ξnew(iω)} where the mass and stiffness matrices are diagonal. The
main advantage of this system is that each modal coordinate is related now to
a specific natural frequency and mode shape. If, for example, one is interested
in frequency response in a certain range, the modal coordinates associated with
higher frequencies would be truncated. The truncation is done by eliminating
unimportant columns from [ΨH ], which results in a lower-order system matrix
[W ] in Eq. (1). The frequency response vector {ξ(iω)} can be used for calcu-
lating the discrete displacement, velocity and acceleration response vectors by
using Eq. (4),

{Hd(iω)} = [φ] {ξ(iω)}

{Hv(iω)} = iω [φ] {ξ(iω)}

{Ha(iω)} = −ω2 [φ] {ξ(iω)}

(14)

When the system is diagonalized before calculating the frequency response, Eq.
(11) becomes

{Hd(iω)} = [φnew] {ξnew(iω)}

{Hv(iω)} = iω [φnew] {ξnew(iω)}

{Ha(iω)} = −ω2 [φnew] {ξnew(iω)}

(15)

where [φnew] = [φ] [ΨH ]
When the direct approach is taken via Eq. (11), the response at a certain

location depends on the modes of the respective component only, as indicated
by Eq. (4), but it is important to consider all the component modes taken
into account in the coupling equations. When the new-basis approach is taken
through Eq. (12), each mode contains displacements of all the model points.
However, high-frequency modes may be truncated without having significant
effects on the recovered discrete response values.

3. Sensitivity of Frequency Response to Structural Changes

The derivatives of frequency response parameters to structural changes are de-
fined by the derivatives of the response parameters of Eq. (11) with respect to
the changed properties,

∂ {Hd(iω)}

∂p
= [φ]

∂ {ξ(iω)}

∂p

∂ {Hv(iω)}

∂p
= iω [φ]

∂ {ξ(iω)}

∂p

∂ {Ha(iω)}

∂p
= −ω2 [φ]

∂ {ξ(iω)}

∂p

(16)

where [f ] is not differentiated because it is a matrix of fixed modal coordinates
not to be confused with the actual normal modes of the structure. Hence, the
use of Eq. (11) for sensitivity analysis is preferred over Eq. (12) that would
require the differentiation of [fnew]. The derivatives of the modal response vector
in Eq. (13) is obtained by the differentiation of Eq. (1) which yields

∂ {ξ(iω)}

∂p
=

∂
[

W (iω)−1
]

∂p
[φ]

T
{F (iω)}

= [W (iω)]
−1 ∂ [W (iω)]

∂p
[W (iω)]

−1
[φ]

T
{F (iω)}

(17)
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The modal-coupling formulation described in the previous section offers signif-
icant advantages when used for sensitivity analysis. Since a specific structural
change is associated with a specific substructure or a specific structural link, the
resulting sensitivity matrix ∂ [W (iω)] /∂p would be mostly zero, except for the
relevant partitions. A major question is, of course, whether the CMS approach
is sufficiently accurate for sensitivity analysis. The answer is that the use of
fictitious masses at the interfaces of the separate components while their modes
are generated, can provide the required accuracy, as will be demonstrated by
the numerical applications below.

Two practical sensitivity cases are formulated and demonstrated in this pa-
per: (a) derivatives with respect to natural frequencies of separate substruc-
tures, which can be instrumental in defining design and acceptance criteria to
component developers; and (b) derivatives with respect to discrete properties of
structural links that may be used in their design process.

The only parts of [W ] that are functions of the component natural frequen-
cies are the stiffness matrix of Eq. (5) and the damping matrix in Eq. (8).
The derivatives of these matrices are zero matrices except for a single non-zero
element in each matrix. For example, the non-zero terms in ∂ [W (iω)] /∂p with
respect to the first natural frequency of substructure A are

∂K11

∂ωA1

= 2MA11
ωA1

(18)

and, when Eq. (8) is used

∂B11

∂ωA1

= 2MA11
ςA1

(19)

The derivatives in Eqs. (15) and (16) are with respect to the natural frequencies
of the components calculated with boundary fictitious masses. If one wants to
calculate the derivatives with respect to natural frequencies associated with
a different set of fictitious masses, including no fictitious masses at all, the
component modes should be first transformed to a new set of modes. The
transformation can be performed by applying the component diagonalization
process described in Ref. [9], where the difference between the two sets of
fictitious boundary masses is removed. Once the transformation is performed,
the fictitious mass matrices in Eq. (6) become the new ones and the eigenvalues
in Eq. (5) are those associated with the new fictitious masses.

The derivatives of [W ] with respect to changes in structural links are defined
by the derivatives of the structural matrices in Eqs. (6-8). For example, the
derivatives with respect to a structural parameter that affects Link #1 are

∂ [W (iω)]

∂p
=

[

φ(1)
]T



−ω2 ∂
[

M (1)
]

∂p
+ iω

∂
[

B(1)
]

∂p
+ (1 + iG)

∂
[

K(1)
]

∂p
+ i

∂
[

K
(1)
G

]

∂p





[

φ(1)
]

(20)

where

[

φ(1)
]

=





φIA

φIB

I



 (21)

The derivatives of [W ] are used for calculating the derivatives of the frequency
response of the modal displacements, Eq. (14), and then the frequency response
of the selected displacements, velocities and accelerations, Eq. (13).
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4. Response to Random Road Excitation

The formulation of random response analysis to road excitation in this paper is
identical to that of Ref. [9] , except that a time delay is now defined between the
front and rear tires. The bottom points of the tires are loaded by large masses
of 106 tons each in the z coordinate. The application forces that are equal to
the prescribed accelerations times the large added masses enforce the required
excitation accelerations. The input accelerations imposed by a rough road are
defined in statistical terms by the acceleration Power Spectral Density (PSD)
functions S11(ω) and S22(ω) of the inputs to the right and left wheels, and the
complex cross correlation function S12(iω).

Random response is based on frequency response parameters to separate
right- and left- wheel excitations. In each case, the force vector {F (iω)} in Eq.
(1) is zero, except for

Ffront = 106 ; Frear = 106e−iωτ (22)

where t is the time delay between the two wheels. These forces are applied
at the wheel bottom points, in the z direction, where the large masses were
added. The solution of Eq. (1), {ξ(iω)}, is used in each case for calculating the
frequency responses H1(iω) and H2(iω) of a desired parameter to right and left
excitations. These are used for calculating the PSD of the output parameter in
response to a simultaneous excitation

Sout(iω) =
[

H1(iω) H2(iω)
]

[

S11(iω) S12(iω)
S21(iω) S22(iω)

]

[

H1(iω) H2(iω)
]

∗T

(23)
The RMS value of the response parameter is related to the PSD function by

σout =

√

1

2π

∫

∞

0

Sout(ω)dω (24)

The sensitivity of the PSD function of a response parameter to structural
changes can be calculated by

∂Sout

∂p
= 2Re

(

∂

∂p

[

H1 H2

]

[

S11 S12

S21 S22

]

[

H1 H2

]

∗T

)

(25)

where p represents any parametric change (component natural frequency or a
structural link property in our cases). The sensitivity of the associated RMS
value is obtained by the differentiation of Eq. (20),

∂σout

∂p
=

1

4πσout

∫

∞

0

∂Sout(ω)

∂p
dω (26)

5. Numerical Application

5.1 General

The numerical application is of random acceleration response at several points in
a vehicle traveling on a rough road. Figure 1 shows the structural finite element
model of an SUV-type vehicle. The model, the road conditions and the response
points of interest were provided by General Motors. The model has 5,174 grid
points interconnected by 5,654 elements with the total of 22,799 degrees of
freedom. The structure is divided into 7 functional components, as described
in Ref. [9]. For the purpose of method evaluation, some functional components
were merged in the current work to form 3 components. The components are
interconnected by 21 soft elements (of stiffness and/or damping) and 4 structural
links, as detailed below.
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Figure 1: The vehicle
finite-element model

The main purpose of the numerical application presented in this paper is to
demonstrate the use of the fictitious-mass modal coupling technique to sensitiv-
ity analysis of random response with respect to changes in component natural
frequencies and changes in the mechanical properties of structural connections
between the different components. The benchmark problem, the modeling of the
separate components, the modal coupling process, the random response analysis
and the sensitivity analysis are described in the following subsections.

5.2 The Benchmark Problem

The vehicle model shown in Figure 1 is excited in the benchmark problem by
enforced vertical accelerations due to a 37.5 mph travel on a rough road. The
excitation is defined by power-spectral-density (PSD) functions associated with
the accelerations in the Z direction at the bottom point of the four wheels shown
in Figure 2. The PSD functions of the input accelerations are defined for the
front wheels. The rear wheels are experiencing the same excitations as the
respective front ones, but with a time delay of τ=0.177s.

Large masses of 106 tons each are introduced at the excitation points, in
the Z direction. These large masses should not be confused with the inter-
face fictitious masses described below. The application forces that are equal to
the prescribed accelerations times the large added masses enforce the required
excitation accelerations. The excitation points are restrained in all the other
directions, which yields three pure rigid-body modes. The four large masses at
the excitation points yield, in effect, four modes of zero or almost-zero frequency.
All these 4 modes are referred to below as rigid-body modes.

The response points are shown in Figure 3, four at the seats and four at the
wheel centers. The benchmark NASTRAN runs calculated frequency response
and PSD of the accelerations at the response points in all directions, in the
frequency range of 1-50 Hz. The reference computations were performed using
Solution 111 of MSC/NASTRAN. The 2-column complex matrix [H (iω)] of
output frequency response values due to right and left excitations was calculated
by solving Eq. (1) with the forces of Eq. (18) at the right and the left wheels
separately. The response spectrum matrix was then calculated by Eq. (19).

5.3 Component modes

The benchmark vehicle was divided into three components for the purpose of
subsequent dynamic solutions by modal coupling. The definition of the various
components and the associated model information are given in Table 1.

The separate components were loaded with fictitious masses at the interface
coordinates with neighboring components. The number of interconnection de-
grees of freedom between the various components, and the fictitious mass terms
loading them, are detailed in Table 2. The off-diagonal numbers indicate the
number of linear/angular interface degrees of freedom. The diagonal terms in-
dicate the mass/moment-of-inertia values used uniformly at the borders of each
component.
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Figure 2: Excitation
and output points

Figure 3: Interface
points and interconnec-
tion elements

Component Mass, kg # of dof # of grid points # of elements
Body
+ Steering
Column

963.9 18389 4014 2805

Frame
+ Front
+ Engine
+ Diff.
Carrier

1070.0 4242 1038 1567

Rear 194.4 450 123 52
Total 2228.3 23081 5175 4424

Table 1: Components of
the vehicle finite-element
model

Component No. 1 2 3
1 250.0/0 39/3
2 39/3 150.0/2.0*108 32/30
3 32/30 30.0/4.0*105

Table 2: Linear/angular
fictitious mass terms (kg
and kg*mm2) and num-
ber of linear/angular in-
terface coordinates (off-
diagonal terms)
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Table 3: Component
modes taken into account

Component No. Number of Modes Highest Natural Frequency [Hz]
1 137 100.2
2 138 99.5
3 54 99.7

Figure 4: Interface
points between Compo-
nents 1 and 2

A summary of the interface points and the types of interconnection elements
is given in Figure 3. There are two types of interconnection elements. “Soft”
elements are simple springs, some of them with viscous damping, that have
no inner degrees of freedom. “Structural Links” are structural interconnection
components with inner degrees of freedom. Some of the elements of the struc-
tural links are assigned with structural damping. The interface points between
Components 1 and 2 and between Components 2 and 3 are shown in Figures 4
and 5 respectively.

The number of modes taken from each component (including rigid-body
modes) and the highest frequencies in the separate modal groups are given in
Table 3. As will be shown later, these modes are sufficient for obtaining good
results in the frequency range of interest, which was from 0 to 50Hz.

5.4 Normal modes by coupling

The mass and stiffness matrices of the coupled system were constructed as in
Eq. (5), extended to include 3 components and 4 structural links. The number
of degrees of freedom in the coupled system is the sum of the component modes
taken into account, 329 as detailed in Table 3, plus 63 which is the number
of inner coordinates of the structural links. The coupled 392*392 stiffness and
mass matrices were used for calculating the lowest 91 natural frequencies below
50 Hz and the associated eigenvectors using Matlab. The 44 lowest frequencies

Figure 5: Interface
points between Compo-
nents 2 and 3
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Mode Frequency
[Hz]

Direct
[Hz]

Error
[%]

Mode Frequency
[Hz]

Direct
[Hz]

Error
[%]

1 1.27 1.27 0.02 23 12.96 12.96 0.01
2 1.49 1.49 0.01 24 13.10 13.10 0.01
3 1.60 1.60 0.00 25 13.37 13.37 0.02
4 2.18 2.18 0.00 26 13.75 13.75 0.01
5 2.99 2.99 0.01 27 14.38 14.38 0.03
6 3.31 3.31 0.01 28 15.39 15.39 0.06
7 3.67 3.67 0.09 29 15.71 15.70 0.02
8 4.70 4.70 0.02 30 16.42 16.41 0.09
9 4.84 4.84 0.01 31 17.02 17.01 0.02
10 5.65 5.65 0.00 32 17.51 17.49 0.12
11 6.00 6.00 0.01 33 18.13 18.12 0.07
12 8.38 8.38 0.01 34 18.76 18.75 0.07
13 8.74 8.74 0.01 35 19.74 19.72 0.11
14 9.11 9.11 0.01 36 20.50 20.46 0.19
15 9.54 9.54 0.00 37 21.60 21.56 0.19
16 9.57 9.57 0.03 38 21.62 21.60 0.11
17 10.00 10.00 0.02 39 22.57 22.55 0.10
18 10.60 10.59 0.00 40 24.49 24.48 0.04
19 10.63 10.63 0.00 41 25.25 25.16 0.32
20 12.42 12.42 0.01 42 25.82 25.73 0.33
21 12.63 12.63 0.00 43 26.19 26.13 0.26
22 12.76 12.76 0.02 44 27.11 27.21 0.37

Table 4: Natural fre-
quencies of the vehicle by
coupling and by direct
solution

(except for the 4 rigid-body zero frequencies) are compared to those obtained
by direct MSC/NASTRAN solution in Table 4. It can be seen that the coupling
procedure predicts the 44 frequencies below 26.2 Hz with frequency errors of
less than 0.34%. The entire 91 frequencies below 50 Hz were calculated with
frequency errors of less than 1.4%. The accuracy of the resulting modes will be
examined by the accuracy of the dynamic response calculations in the following
sections.

The component modes that were generated with boundary fictitious masses
were also used for calculating the free-free separate component modes without
the fictitious masses. The purpose of this “cleaning” is to examine the adequacy
of the modal coupling procedure for sensitivity analysis with variations in the
structural properties of the interconnection elements. An accurate cleaning
process would also indicate that sensitivities with respect to natural frequencies
of components with fictitious masses other than those used for modal coupling,
as discussed after Eq. (16), are feasible. As shown in Ref. [9], the eigenvalues
of Component A, for example, without the boundary fictitious masses are those
associated with the free undamped equation of motion

[

MA − φT
IAMFAφIA

]

{

ξ̈A

}

+ [ΩAMA] {ξA} = {0} (27)

All the component frequencies up to 50Hz obtained by eigensolution of Eq.
(23) were up to 1% larger than the corresponding frequencies obtained directly
from the finite-element model.

5.5 Dynamic response to random excitation by modal coupling

The benchmark problem was calculated by modal coupling using Eq. (1) with
the stiffness and mass matrices of Eq. (5), the damping and structural damping
matrices of Eq. (8), and the excitation vector of Eq. (9), all expanded to include
the 3 components and 3 structural links. The modal transformation of Eq. (10)
was also used and the problem size was reduced to the 91 lowest-frequency

ASDJournal (2012) Vol. 2, No. 3, pp. 55–71



∣

∣

∣
66 Sensitivity of Vehicle System Vibrations to Subsystem Structural Variations

Table 5: Maximal PSD
responses [mm2/s4/Hz]
by coupling and by direct
calculations.

Grid Point Direct Freq.
[Hz]

Maximum of
Acceleration PSD

Error
[%]

Modal
Coupling

Direct

3130002 X
Y
Z

1.3
1.5
1.4

1.7709
15.724
5.3247

1.7742
15.732
5.3206

0.183
0.056
-0.08

3135002 X
Y
Z

1.3
1.5
1.4

1.6464
16.937
6.1185

1.6494
16.952
6.1141

0.181
0.084
-0.072

4051000 X
Y
Z

2.2
1.5
1.5

2.8713
13.453
7.0416

2.8782
13.468
7.0452

0.241
0.113
0.05

4056000 X
Y
Z

2.2
1.5
1.5

2.076
13.453
3.3872

2.0759
13.468
3.3854

-0.008
0.113
-0.051

5501001 X
Y
Z

1.3
1.5
1.5

8.2532
46.512
45.302

8.2597
46.576
45.333

0.078
0.138
0.069

5501003 X
Y
Z

1.3
1.5
1.5

7.4875
47.389
18.118

7.4921
47.455
18.117

0.062
0.140
-0.007

5502001 X
Y
Z

1.3
1.5
1.5

9.3799
54.740
19.695

9.3858
54.819
19.718

0.063
0.143
0.114

5502002 X
Y
Z

1.3
1.5
1.6

8.733
54.390
8.9571

8.7388
54.468
8.9729

0.063
0.143
0.175

modes, as done in the benchmark case of Ref. [9]. The resulting PSD curves at
the 8 output points in the X, Y and Z directions, calculated by Eq. (19), were
compared in Ref. [9] to those obtained directly by MSC/NASTRAN with the
full vehicle model. It was shown that the results obtained by the two methods
are practically identical. The numerical peak values that are compared in Table
5 exhibit insignificant differences as well. The RMS values of the response
parameters are compared to those obtained directly by MSC/NASTRAN in
Table 6, exhibiting negligible differences.

5.6 Sensitivity of dynamic response to structural changes

Derivatives of the RMS values of the selected response parameters were cal-
culated with respect to changes in structural links and changes in component
natural frequencies. Direct analytical derivatives were based on Eqs. (21) and
(22). Finite-difference derivatives were calculated for comparison by repeating
the response calculations with parameter variations of 0.1% of their original val-
ues. Comparisons between the direct and finite-difference RMS derivative with
respect to stiffness and damping values in the Y direction of the soft element
connecting point 1000003 in Component A to point 2000003 in Component B
are given in Tables 7 and 8. The analytical derivatives in Table 7 are very ac-
curate. The derivatives w.r.t. damping in Table 8 are also of good percentage
accuracy (errors of less than 2%), except for points of very small derivatives.
Comparisons between the direct and finite-difference RMS derivative with re-
spect to a damping value in the Z direction of the structural link connecting
point 4000085 in Component B to point 4100100 in Component C are given in
Tables 9. All percentage errors here are below 0.4%, except for a single point
of a very small derivative, point 5502001 in Z direction.

Sensitivities of the RMS response values to changes in component lowest
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Output
Grid Point

Direction σout, mm /s2

Modal coupling
σout, mm /s2

Direct
Error
[%]

3130002 X 0.62 0.62 -0.06
3130002 Y 1.12 1.12 -0.06
3130002 Z 2.17 2.17 -0.04
3135002 X 0.45 0.45 -0.18
3135002 Y 1.11 1.12 -0.06
3135002 Z 2.24 2.24 -0.01
4051000 X 0.89 0.89 -0.34
4051000 Y 1.85 1.86 -0.08
4051000 Z 2.52 2.52 0.04
4056000 X 0.70 0.70 -0.11
4056000 Y 1.85 1.86 -0.08
4056000 Z 2.37 2.37 0.09
5501001 X 0.88 0.88 -0.09
5501001 Y 1.19 1.19 -0.03
5501001 Z 1.42 1.42 -0.04
5501003 X 0.67 0.67 -0.08
5501003 Y 1.22 1.22 -0.03
5501003 Z 1.33 1.33 -0.02
5502001 X 0.88 0.88 -0.61
5502001 Y 1.75 1.75 -0.09
5502001 Z 1.23 1.23 -0.06
5502002 X 0.72 0.72 -0.28
5502002 Y 1.76 1.76 -0.09
5502002 Z 1.28 1.28 -0.05

Table 6: RMS response
values by coupling and by
direct calculations.

non-zero natural frequencies with fictitious masses are shown in Table 10 for
Component A, Table 11 for Component B and Table 12 for Component C. One
can learn from these tables on the relative effects of the various component
frequencies on system-level response. It can be observed is our case that the an-
alyzed frequency deviations in component B have larger effect than the analyzed
deviation in other components, and that a change in the frequency of Mode 3
in Component B has the largest effect on the vertical response of the driver’s
seat (point 5501001). These are examples of sensitivity information that may
be of interest in the design process.

6. Conclusion

The fictitious-mass modal coupling approach facilitates convenient and efficient
evaluation of the sensitivity of system-level performance to parametric changes
in sub-system structural properties. The fictitious masses that load the sub-
system interface coordinates yield high-accuracy system-level dynamic response
properties and their sensitivity to parametric changes without updating the
modal coordinates. The resulting new modeling procedure facilitates the per-
formance of extensive high-accuracy parametric design sessions in an on-line
manner using common utility software packages such as Matlab, without return-
ing to the finite-element model. Such sensitivities may be of high importance in
defining design criteria and acceptance procedures, and during the vehicle design
process itself. The small size of the computational model facilitates its efficient
inclusion is automatic design optimization schemes with system-level behavior
constraints. The techniques developed in this study have the potential to im-
prove the computational accuracy and efficiency of the vehicle finite-element
model in predicting the effects of subsystem structural accuracy requirements
on system-level vehicle vibrations.
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Table 7: Derivatives of
RMS response values with
respect to changes in a
stiffness element connect-
ing Components A and B.

Output
Grid Point

Direction Derivative × 10−6 Finite Difference
Derivative ×10−6

Error
[%]

3130002 X -0.78 -0.78 0.06
3130002 Y -1.95 -1.95 0.04
3130002 Z 0.20 0.20 0.03
3135002 X 0.09 0.09 -0.10
3135002 Y -1.60 -1.60 0.05
3135002 Z 0.22 0.22 0.06
4051000 X -2.91 -2.91 0.05
4051000 Y -4.04 -4.04 0.04
4051000 Z -0.37 -0.37 0.05
4056000 X -2.62 -2.62 0.05
4056000 Y -4.04 -4.04 0.04
4056000 Z 0.09 0.09 0.04
5501001 X -1.57 -1.57 0.05
5501001 Y -0.12 -0.12 -0.17
5501001 Z 0.05 0.05 0.04
5501003 X -1.26 -1.26 0.03
5501003 Y -0.06 -0.06 -0.32
5501003 Z -0.21 -0.21 -0.16
5502001 X -1.40 -1.40 0.01
5502001 Y -2.45 -2.44 0.04
5502001 Z -0.02 -0.02 0.25
5502002 X -0.73 -0.73 0.01
5502002 Y -2.47 -2.47 0.04
5502002 Z -0.06 -0.06 -0.65

Table 8: Derivatives of
RMS response values with
respect to changes in a
damping element connect-
ing Components A and B.

Output
Grid Point

Direction Derivative × 10−5 Finite Difference
Derivative ×10−5

Error
[%]

3130002 X -0.79 -0.79 0.04
3130002 Y -3.90 -3.92 -0.52
3130002 Z -0.01 -0.01 9.12
3135002 X -1.55 -1.54 0.07
3135002 Y -5.22 -5.24 -0.46
3135002 Z -3.81 -3.81 0.00
4051000 X -0.08 -0.10 -25.6
4051000 Y -0.86 -0.90 4.94
4051000 Z -2.17 -2.18 -0.11
4056000 X -1.93 -1.95 -1.39
4056000 Y -0.86 -0.90 -4.94
4056000 Z -0.39 -0.39 -1.05
5501001 X -0.23 -0.24 -3.90
5501001 Y -1.60 -1.60 -0.19
5501001 Z -2.72 -2.72 -0.21
5501003 X -6.73 -6.75 -0.23
5501003 Y -0.20 -0.20 -2.04
5501003 Z -0.50 -0.52 -2.92
5502001 X -23.70 -23.70 -0.01
5502001 Y -1.35 -1.37 -1.95
5502001 Z -5.28 -5.28 -0.04
5502002 X -9.22 -9.23 -0.13
5502002 Y -1.62 -1.64 -1.61
5502002 Z -4.98 -4.99 -0.25
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Output
Grid Point

Direction Derivative × 10−2 Finite Difference
Derivative ×10−2

Error
[%]

3130002 X -3.05 -3.05 0.03
3130002 Y -6.38 -6.38 0.02
3130002 Z -0.80 -0.80 0.00
3135002 X -1.78 -1.78 0.02
3135002 Y -5.86 -5.86 0.02
3135002 Z 0.11 0.11 0.05
4051000 X 0.64 0.64 -0.02
4051000 Y -2.69 -2.69 0.04
4051000 Z -9.93 -9.93 0.06
4056000 X -0.25 -0.25 0.13
4056000 Y -2.69 -2.69 0.04
4056000 Z -20.14 -20.13 0.04
5501001 X 0.47 0.47 0.00
5501001 Y -1.64 -1.64 0.04
5501001 Z 0.28 0.28 -0.33
5501003 X -0.44 -0.44 0.00
5501003 Y -1.48 -1.47 0.04
5501003 Z -1.20 -1.20 0.10
5502001 X -4.71 -4.71 0.04
5502001 Y 0.18 0.18 -0.26
5502001 Z 0.01 0.01 -9.70
5502002 X -2.03 -2.03 0.03
5502002 Y 0.42 0.42 -0.11
5502002 Z -1.57 -1.56 0.06

Table 9: Derivatives of
RMS response values with
respect to changes in a
damping element connect-
ing Components B and C.

Output
Grid Point

Direction Derivative at f=1.1073
Hz, (mm/s2)/Hz×10−5

Derivative at f=1.1349
Hz, (mm/s2)/Hz×10−5

3130002 X -15.53 -4.08
3130002 Y 75.23 2.40
3130002 Z 6.83 -0.87
3135002 X 9.04 0.80
3135002 Y 88.31 1.88
3135002 Z -9.16 -3.97
4051000 X -13.44 -3.20
4051000 Y 7.82 -0.20
4051000 Z 5.19 0.39
4056000 X 9.39 0.86
4056000 Y 7.82 -0.20
4056000 Z 0.09 4.16
5501001 X -32.61 -0.96
5501001 Y 35.72 -0.05
5501001 Z -57.63 -12.64
5501003 X -45.09 -3.30
5501003 Y 16.57 -2.19
5501003 Z 3.78 -3.51
5502001 X -182.06 -124.93
5502001 Y -1.15 -7.25
5502001 Z -75.25 -24.37
5502002 X -39.02 -35.91
5502002 Y -6.01 -8.09
5502002 Z 1.84 -14.47

Table 10: Derivatives
of RMS response values
with respect to frequency
changes in Component A

ASDJournal (2012) Vol. 2, No. 3, pp. 55–71



∣

∣

∣
70 Sensitivity of Vehicle System Vibrations to Subsystem Structural Variations

Table 11: Derivatives
of RMS response values
with respect to frequency
changes in Component B

Output
Grid Point

Direction Derivative at f=0.4414
Hz, (mm/s2)/Hz×10−2

Derivative at f=0.7229
Hz, (mm/s2)/Hz×10−2

3130002 X -33.10 72.14
3130002 Y 7.95 -34.43
3130002 Z -0.27 -12.30
3135002 X -31.55 80.32
3135002 Y 5.90 -32.69
3135002 Z -5.86 0.00
4051000 X -20.10 -22.58
4051000 Y 11.66 95.12
4051000 Z -6.36 8.53
4056000 X -16.86 -6.35
4056000 Y 11.66 95.12
4056000 Z -3.25 -1.10
5501001 X -8.63 -12.09
5501001 Y 1.61 56.13
5501001 Z 19.01 2.79
5501003 X -5.91 -1.53
5501003 Y 1.69 61.07
5501003 Z 28.25 19.23
5502001 X 1.86 -13.63
5502001 Y -17.06 80.15
5502001 Z 6.94 -4.08
5502002 X -1.73 -3.24
5502002 Y -18.67 80.48
5502002 Z 13.31 6.04

Table 12: Derivatives
of RMS response values
with respect to frequency
changes in Component C

Output
Grid Point

Direction Derivative at f=0.3332
Hz, (mm/s2)/Hz×10−5

Derivative at f=0.4769
Hz, (mm/s2)/Hz×10−5

3130002 X -27.52 -223.34
3130002 Y -42.34 -84.30
3130002 Z -43.02 -16.62
3135002 X -54.95 -156.62
3135002 Y -21.11 30.33
3135002 Z -8.98 -17.13
4051000 X 9.42 -152.96
4051000 Y 60.27 -920.07
4051000 Z -44.72 -58.50
4056000 X -24.00 -70.02
4056000 Y 60.27 -920.07
4056000 Z -107.27 -64.70
5501001 X -36.81 -72.09
5501001 Y 2.74 -516.43
5501001 Z 148.78 -182.37
5501003 X -217.03 -6.00
5501003 Y 14.78 -541.66
5501003 Z 29.62 -407.68
5502001 X -283.60 -39.22
5502001 Y 48.02 -760.83
5502001 Z -46.92 -30.66
5502002 X -299.52 -4.33
5502002 Y 52.96 -746.44
5502002 Z -431.46 -260.51
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