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Abstract
In this paper we investigate the unsteady aeroelastic response of a contrafan stage us-
ing nonlinear time-integrated RANS equations and multichorochronic boundary con-
ditions which are able to propagate multiple periodic perturbations with uncorrelated
frequencies. The objective is to model a single passage in each blade row to reduce
the computational cost and to take into account both unsteady phenomena relative
to the blade passage of the neighboring blade row and to the vibration induced by
the blade deformations. Numerical comparisons are performed between a full annulus
reference computation of a radial slice and the present multichorochronic simulations
on a single passage to check the quality of the approximation. The influence of several
parameters like the number of harmonics or spinning modes is investigated. Particular
attention is finally paid to the approximation of the generalized aerodynamic forces
from which the aeroelastic stability can be assessed.

1 Introduction

Aeroelastic stability computations are usually performed on isolated turboma-
chinery blade rows, meaning that the effects induced by the neighboring blade
rows (like wake interaction, potential effects, shock wave propagation,...) are
neglected. Recent work has however pointed out the importance of modeling
adjacent blade rows on stator/rotor configurations, see for example [16, 19, 24].

Multistage simulations on the full 360◦ annulus remain however extremely
costly because of the very large number of degrees of freedom involved when
the blade count is large. Numerical methods have therefore been developed
since the end of the 70’s to reduce the size of the computational domain. An
exact reduction is possible if the blade counts of each blade row share a common
multiple. This latter is however often small or even equal to one, preventing
an exact reduction. Blade count reduction methods have however been devel-
oped using approximate blade counts and a rescaling of the geometry [1] or
a modification of the boundary condition dealing with the pitch mismatch if
the blade counts are not modified but only few blades are considered in each
blade rows [8]. However these methods either modify the main flow character-
istics like the mass flow because of the modification of the geometry or imply
contraction/dilatation effects which may modify the frequencies.

The unsteady phenomena involved in multistage configurations are mainly
due to the blade passage of the neighboring blade rows or the vibration of some
structural modes which are related to the notion of traveling waves, or spin-
ning modes, described in [17, 25, 29]. Based on this theory, more advanced
boundary conditions have later been introduced by Erdos et al. [6] and Giles
[11] for single stages using phase-lagged or “chorochronic” relations to link the
flow field on azimuthal boundaries of a single passage without changing the
blade count. Many improvements have then been brought to the initial formu-
lation by He [13, 14] and Gerolymos et al. [9, 10] among others and the use
of a spectral approximation (Fourier decomposition) of the flow field has be-
come popular to avoid the storage of the flow field at many time instants. A
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moving-average technique has finally been proposed [9] to compute the Fourier
coefficients and recently Rahmati et al. [22] have improved the method to avoid
leakage problems. Such boundary conditions have also been used to perform
aeroelastic computations on isolated blade rows since the prescribed pattern
of vibration associated to the structural eigenmodes is a traveling wave which
satisfies the phase-lagged boundary conditions. These boundary conditions are
consequently appropriate to deal with a single periodic phenomenon like the
effect of blade passage in a rigid single stage or the vibration in an isolated
vibrating blade row. He [13] and Neubauer [21] have finally extended the usual
chorochronic boundary conditions to deal with several periodic phenomena (like
in multistage / single vibrating stage configurations) leading to the so-called
multichorochronic boundary conditions which have recently been implemented
in Onera’s CFD software elsA and validated on multistage rigid configurations
[4]. Few attempts have been reported in the literature to model the influence
of neighboring blade rows on the aeroelastic stability using a single passage
model and multichorochronic boundary conditions. Buffum [2], Silkowski and
Hall [24] and more recently Hall and Ekici [12] used indeed a “coupled mode”
approach which requires several resolutions of the flow equations on each iso-
lated blade row to compute reflection and transmission coefficients which are
then assembled together to model a posteriori the interaction between the rows.
Multichorochronic boundary conditions require on the contrary only one com-
putation which takes intrinsically into account the coupling between the blade
rows. Such boundary conditions have been used either in the frequency domain
with the Harmonic Balance Technique [5, 23] or in the time domain [16, 19].
The HBT however assumes a harmonic flow field in the whole spatial domain
and requires large memory resources since several coupled steady problems are
solved simultaneously. Although they benefit from acceleration techniques and
are in this regard faster to converge, time domain simulations are preferred in
this paper since they are more accurate with respect to the hypothesis on the
flow field.

We focus in this paper on this last type of simulation with an application
to an industrial configuration of a vibrating contrafan. The numerical model of
the fluid and the structure is first described in section 2. The multichorochronic
boundary conditions are then detailed in section 3 in the case of single or mul-
tiple perturbations propagated through the boundaries. Finally the aeroelastic
response computed with the full annulus model is analyzed in term of spec-
tral content and the influence of several numerical parameters of the multi-
chorochronic approximation is investigated in section 4. It is shown that a good
agreement is found with respect to full annulus computations using only a small
number of spinning modes (i. e. frequencies) for the approximation of the flow
field with multichorochronic boundary conditions.

2 Numerical Model

2.1 Flow Model

Because of the relative motion of the different blade rows and their interactions,
the significant role of viscous and turbulent effects and the deformation of the
structure, the flow is governed by the Unsteady Reynolds Averaged Navier-
Stokes (URANS) equations using the arbitrary Lagrangian-Eulerian formulation
such that the deformation of the spatial domain DF (t) induced by the flexible
structure at the fluid-structure interface is taken into account. The equations are
written in the relative frame of reference associated to the rigid body rotation of
each blade row around the axis ix at the constant rotation speed Ω. Expressing
the equations with the relative velocity components v = vabs− vrb leads finally
to:

d

dt

∫

DF

ρdv +

∮

∂DF

ρ (v − vd) · n ds = 0, (1a)
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d

dt

∫

DF

ρv dv +

∮

∂DF

[ρv ⊗ (v − vd) + p?I]nds =

∮

∂DF

τ ?nds

+

∫

DF

ρ (fCor + fcen) dv,

(1b)

d

dt

∫

DF

ρE?r dv +

∮

∂DF

[ρE?r (v − vd) + p?v] · nds =

∮

∂DF

[τ ?v − q?] · nds

+

∫

DF

ρv · fcen dv . (1c)

The fluid is described by the density ρ, the momentum ρv and the total en-
ergy ρE?r . The convective and diffusive fluxes are integrated on the domain
boundary ∂DF with the normal n. The deformation of the fluid-structure
interface is propagated in the spatial domain DF using a structural analogy
and induces a mesh deformation velocity vd which modifies the convective
fluxes. The rigid body motion produces the gyroscopic centrifugal and Cori-
olis forces fcen = −∂vrb/∂t − ω ∧ vrb and fCor = −2ω ∧ v. For a rotating
blade row, the angular velocity vector is ω = Ωix and the rigid body velocity is
vrb = ω∧ rir(θ) = Ωriθ(θ) with (r, θ) the cylindrical coordinates in the relative
frame. The centrifugal force finally reduces to fcen = Ω2rir(θ).

The starred quantities p? = p+ 2/3 kt, E
?
r = Er +kt = e+‖v‖ /2 +kt, τ

? =
(1 +µt/µ)τ and q? = (1 +µt/µPr/Prt)q are defined from the turbulent kinetic
energy kt, the turbulent viscosity µt and the turbulent Prandtl number Prt = 0.9
if the Boussinesq’s hypothesis is considered to model turbulent effects. The heat
flux is given by the Fourier law q = −kT∇T based on the heat conductivity kT .
The stress tensor for a Newtonian fluid is τ = −2/3µ (divv) I +µ(∇v+ (∇v)T)
with the Stokes hypothesis. For a perfect gas, the internal energy and the
pressure are given by e = cvT and p = ρRsT where Rs is the specific constant
and the specific heat ratio γ = cp/cv is constant. The viscosity is governed

by the Sutherland law µ(T ) = µS
√
T/TS(1 + CS/TS)/(1 + CS/T ) and the

heat conductivity is kT = cpµ/Pr. The one-equation Spalart-Allmaras model
[26] is considered in this paper and the vector of flow variables is therefore
w = ρ [1,v, E?r , ν̃]T with ν̃ = νt = µt/ρ far from the walls. The turbulent
kinetic energy is thus neglected in the approximation of p? and E?r .

Adiabatic wall boundary conditions are applied on the hub, the carter and
the blade surfaces. The kinematics imposes that the absolute velocity match the
wall velocity vabs = vw and the condition on the relative velocity thus writes
v = vw − vrb. The wall velocity for the blades is vw = vrb + vd since they are
rotating and deformable, hence the condition vblades = vd. On the contrary the
hub rotates rigidly, so the condition writes vhub = 0. Finally the carter is a
fixed surface in the absolute frame and is rigid; the wall velocity is vw = 0 and
the relative velocity has to satisfy vcarter = −vrb. An additional condition on
the temperature T = Tw is also taken into account.

A subsonic injection boundary condition is prescribed on the inlet plane
where the field values are determined from prescribed values of the stagnation
pressure and enthalpy, the direction of the velocity vector and a characteristic
relation. On the outlet plane, a subsonic pressure condition is applied when
computations are performed on a radial slice of the 3D model. Otherwise a
valve boundary condition is imposed on the 3D model’s outlet plane such that
a target pressure and massflow are simultaneously prescribed at a given radial
position. This condition is then supplemented by a radial equilibrium condition
to define the pressure along the radial direction. Full annulus 360◦ simulations
use matching joins on the azimuthal boundaries of each passage and a sliding
plane boundary condition is applied at the interface between the blade rows.
On the contrary, single passage simulations require multichorochronic bound-
ary conditions on these boundaries to link the flow field appropriately. Such
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boundaries are described more thoroughly in section 3.
The flow equations are discretized with a Finite Volume technique. The

fluxes are approximated by the 2nd order Roe’s scheme with Van Albada’s lim-
iter and Harten entropic correction. The time integration combines the implicit
backward Euler scheme and the 2nd order Gear’s method which solves the subit-
erations in physical time-step unlike the Dual Time Stepping. See [3] for more
details about the CFD solver.

2.2 Structural Model

The structural domain DS =
⋃Nb−1
k=0 Bk is assumed to be made up of Nb tuned

blades Bk which are identical to the reference blade B0 through a rotation
of the pitch angle β = 2π/Nb. The cyclic symmetry of such structures thus
induces a spatial periodicity of the solution which can be reduced on a single
blade passage based on physical considerations [7, 18]. More recently and from
a mathematical point of view, the assumption of a Fourier decomposition of the
mechanical variables has led to properly set the variational formulation of the
problem [30]. The physical displacements on any blade Bk consequently write
as the sum of Nb traveling wave coordinates und

u(Bk, t) = <
{
Nb−1∑

nd=0

und
(Bk, t)

}
. (2)

Each traveling wave coordinate und
satisfies the so-called cyclic symmetry bound-

ary condition:
und

(Bk, t) = und
(B0, t) e

i kσnd (3)

with the following definition of the interblade phase angle (IBPA) σnd
which

characterizes the spatial phase shift between the displacements of the different
blades

σnd
= nd β = nd

2π

Nb
. (4)

The physical displacements on any blade Bk are therefore known from the res-
olution of Nb equations for each traveling wave coordinate computed only for
the reference blade B0 by combining Eqs. (2) and (3). For a linear elastic struc-
ture, the Finite Elements discretization supplemented by the cyclic symmetry
boundary condition linking the lower (L) and upper (U) sides of the reference
blade B0 leads to the following system of equations for nd = 0, . . . , Nb− 1 using
the same notations as [28]

M ünd
(t) + C u̇nd

(t) + Kund
(t) = fa,nd

(und
, u̇nd

) (5a)

uLnd
(t) = uUnd

(t) eiσnd (5b)

where M is the mass matrix, K is the stiffness matrix including the centrifugal
effects and C is the damping and gyroscopic effect matrix. The right-hand
side of Eq. (5a) stands for the aerodynamic forces exerted by the pressure on
the reference blade’s fluid-structure interface Γ0 with the assumption that the
pressure field also satisfies the cyclic symmetry property (p(Bk) = p(B0)eikσnd ):

fa,nd
(und

, u̇nd
) =

∫

Γ0

p(B0,und
, u̇nd

)nds. (6)

The vibratory behavior of the structure is described for small amplitudes of
vibration by the eigenmodes which are the solution of the conservative part of
Eq. (5a) with the additional constraint of cyclic symmetry:

Kϕ(i)
nd
− ω(i)2

nd
Mϕ(i)

nd
= 0 (7a)

ϕ(i)L
nd

= ϕ(i)U
nd

eiσnd . (7b)

Vol. 3, No. 2, pp. 1–30 ASDJournal



A. Placzek, L. Castillon
∣∣∣ 5

Each mode type ϕ
(i)
nd for i = 1, . . . , nm has Nb different spatial patterns

corresponding to the nodal diameter nd = 0, . . . , Nb − 1. Because of the cyclic
symmetry boundary condition, the modes are complex conjugates (except for
nd = 0 and Nb/2 if Nb is even in which case the modes are real) and Eqs. (7)

are therefore solved only for nd = 0, . . . , Ñb with Ñb = Nb/2 if Nb is even or

Ñb = (Nb − 1)/2 if Nb is odd. The remaining modes referred to by the index
−nd are deduced by the conjugate relation ϕ

(i)
−nd

= ϕ(i)
nd

and the eigenvalues are
identical: ω

(i)
−nd

= ω
(i)
nd . The eigenmodes inherit the cyclic symmetry property

and are defined on any blade Bk with the relation

ϕ(i)
nd

(Bk, t) = ϕ(i)
nd

(B0, t) e
i kσnd . (8)

Each traveling wave coordinate is finally approximated as a linear combina-
tion of the first eigenmodes and can be defined on any blade Bk with Eq. (8):

und
(Bk, t) ≈

nm∑

i=1

ϕ(i)
nd

(B0) ei kσnd q(i)
nd

(t). (9)

The present aeroelastic simulations are performed for a given modal shape
and nodal diameter ϕ = ϕ

(i0)
nd0

with a prescribed harmonic motion such that
the generalized coordinate q(t) = q

(i0)
nd0

(t) is defined with the eigenpulsation
ωael = ω

(i0)
nd0

and the amplitude q∗. Using Eq. (2) for a single traveling wave nd0
and Eq. (9) with a single mode i0, the physical displacement on any blade Bk
thus depends on the phase shift σael = σnd0

and reduces to:

upres(Bk, t) = <
{
ϕ(B0) q∗ei(kσael − ωael t)

}
. (10)

Such a displacement is a traveling wave coordinate upres = und0
and satis-

fies necessarily the cyclic symmetry boundary condition Eq. (5b). The time
derivative of this prescribed motion defines the deformation velocity sd(Γ, t) =
u̇pres(Γ, t) of the fluid-structure interface Γ which is used for the wall boundary
condition of the fluid problem.

3 Multichorochronic Boundary Conditions

The structural equations of motion have been formulated in the previous section
2.2 on the reference blade domain only using the cyclic symmetry boundary
condition Eq. (3). Similar boundary conditions known as (multi)chorochronic
boundary conditions are now formulated for the flow domain so that single
passage fluid-structure simulations are possible.

3.1 Chorochronicity for Blade Rows Interaction or Aeroelasticity

Chorochronic boundary conditions are used for single passage models to ap-
proximate flow perturbations induced by blade rows interactions in the case of
a single stage or aeroelastic effects due to the vibration of an isolated blade row.
The boundary condition assumes that the flow field vector w on the azimuthal
boundaries of the passage can be related by chorochronic relations such that

w(x, r, θ − β, t) = w(x, r, θ, t− τ) (11)

with β = 2π/Nb the pitch angle of the current blade row and τ the time phase-
lag. These quantities are linked to the spatial wave number κ and the pulsation
of the unsteady phenomenon ω and define the phase shift σ such that:

σ = κβ = ω τ. (12)
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∣∣∣ 6 Aeroelastic response of a single passage contrafan stage

3.1.1 Aeroelastic Excitation

Since the perturbation of the flow field stems from the displacement Eq. (10)
prescribed to the blade with the nodal diameter nd, the unsteady phenomenon is
characterized by the wave number κ = nd and the eigenpulsation ωael = ω

(i)
nd of

the structural mode considered. The phase σ introduced in Eq. (12) is therefore
just the IBPA defined in Eq. (4). According to the sign of the nodal diameter

nd = 0, . . . ,±Ñb which is either positive or negative the following forward or
backward time phase-shift is produced:

τnd
=
nd β

ωael
. (13)

The chorochronic boundary condition for aeroelasticity can be used for an
isolated blade row and for a single nodal diameter only. The structural motion is
therefore reduced to a single modal shape like in Eq. (10) for which the stability
is evaluated.

The analogy between the cyclic symmetry boundary condition introduced
in Eq. (5b) for the azimuthal boundaries of the structural passage and the
chorochronic boundary introduced previously in Eq. (11) is clear if one consider
that the lower (resp. upper) boundary is located at the azimuth θ− β (resp. θ)
and that a harmonic motion is prescribed to a single traveling wave coordinate.
In this case Eq. (5b) (which is satisfied by the prescribed motion upres) writes
ûnd

(θ − β)eiωael t = ûnd
(θ)eiωael teiσnd ; the right-hand side is re-arranged as

ûnd
(θ)eiωael (t− τnd

) with the previous definition Eq. (13) of the time phase-lag
and the cyclic symmetry boundary condition Eq. (5b) finally writes und

(θ −
β, t) = und

(θ, t− τnd
) which is essentially of the form Eq. (11).

3.1.2 Blade Rows Interaction

In the case of a single (rigid) stage, the flow field is perturbed by the unsteady
fluctuations induced by the neighboring blade row. The pulsation of the un-
steady phenomenon impinging on the current blade row with N cur

b blades now
depends on the blade count Nadj

b of the adjacent blade row and is given by

ωadj > cur = |Nadj
b ∆Ω| (14)

with ∆Ω = Ωadj −Ωcur the relative velocity between the blade rows. The wave
number of the perturbation seen by the current blade row is κ = Nadj

b . From
the previous definitions of the phase-shift Eq. (12), the time phase-lag is

τadj > cur =
Nadj
b βcur

ωadj > cur
=
βcur

∆Ω
. (15)

The pulsation is zero if ∆Ω = 0, that is if the two blade rows have the same
velocity. For such stages the flow is steady and chorochronic boundary condi-
tions are unnecessary since there is no relative unsteady motion. For multistage
configurations like a stator/rotor/stator configuration this steady contribution
arising from the interaction between the stators cannot be propagated correctly
using chorochronic boundary conditions since the time phase-lag would be in-
finite. This clocking effect described for example in [4] can lead to continuity
and conservation losses. More advanced chorochronic boundary conditions are
currently being developed [27] to take such phenomena into account.

Table 1 summarizes the values of the parameters involved in the definition of
mono-periodic chorochronic boundary conditions for aeroelastic and blade rows
interactions.

3.2 Multichorochronic Boundary Conditions for Multiple Input

When multiple sources of perturbation are experienced by a blade row, the
chorochronic boundary condition has to be extended to deal with several fre-
quencies and time phase-lags. We assume that the flow field on the azimuthal
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Simulation type κ β ω τ σ

Aeroelastic, nodal diam. nd,
pulsation ωael, isolated row

nd 2π/Nb ωael
ndβ

ωael
ndβ

Single stage, rigid blades,
relative velocity ∆Ω

Nadj
b 2π/N cur

b Nadj
b ∆Ω

β

∆Ω
Nadj
b β

Table 1: Summary of
wave parameters for
chorochronic boundary
conditions.

boundaries of the passage only can be decomposed as the sum of several pertur-
bations according to the spinning mode theory of Tyler and Soffrin [29]. Each
perturbation, or spinning mode, is a harmonic oscillation at a given frequency
ωp and wave number κp such that [13]

w(x, r, θ, t) = w0(x, r, θ) +

Nsp∑

p=1

wp(x, r, θ, t) (16)

with the following phase shift associated to each spinning mode

σp = κpβ = ωpτp. (17)

In practice, the flow field is approximated with a Fourier decomposition using
Nh,p harmonics such that each spinning mode writes

wp(x, r, θ, t) =

Nh,p∑

k=1

wp,k(x, r, θ, t) =

Nh,p∑

k=1

<
{
cp,k(x, r)eik(ωpt+ κpθ)

}
. (18)

The Fourier coefficients cUp,k and cLp,k are computed on upper and lower az-
imuthal boundaries, i. e. for a given value of the angle θU and θL distant from
β. The flow field on each boundary is then updated by means of characteristics
relations which determine the boundary to update with respect to the flux in
the opposite one. Assuming without loss of generality that the lower bound-
ary has to be updated, the boundary condition imposes for each harmonic that
cLp,k = cUp,k and the flow field is easily deduced from the Fourier coefficients
computed on the upper boundary using Eq. (18):

wL
p,k(x, r, θL, t) = <

{
cUp,k(x, r)eik

(
ωpt+ κpθ

U − κpβ
)}

= <
{
cUp,k(x, r)eik

[
ωp(t− τp) + κpθ

U
]}

= wU
p,k(x, r, θU , t− τp).

(19)

Each harmonic of a given spinning mode in Eq. (18) thus satisfies the
chorochronic boundary condition Eq. (19) with the same time shift τp. The
chorochronic boundary condition is consequently also verified by any spinning
mode:

wp(x, r, θ − β, t) = wp(x, r, θ, t− τp). (20)

In the absence of any steady spatial distortion, the mean field w0(x, r, θ) has
a spatial periodicity associated to the current blade count and can be written

w0(x, r, θ) =

Mh∑

`=0

<
{
ĉ0,`(x, r)e

i`Nbθ
}
. (21)

The mean flow field is consequently identical on lower and upper azimuthal

boundaries at θU and θL since ei`Nbθ
L

= ei`Nbθ
U

e−i`Nbβ = ei`Nbθ
U

. This prop-
erty can be used to interpret the mean part w0(x, r, θ) as a zeroth harmonic of
the Fourier decomposition Eq. (18) which is rewritten as:

w(x, r, θ, t) =

Nsp∑

p=1

Nh,p∑

k=0

<
{
cp,k(x, r)eik(ωpt+ κpθ)

}
. (22)

ASDJournal (2014) Vol. 3, No. 2, pp. 1–30



∣∣∣ 8 Aeroelastic response of a single passage contrafan stage

This implies that

cp,0(x, r) =
w0(x, r, θ)

Nsp
=

1

Nsp

Mh∑

`=0

ĉ0,`(x, r)e
i`Nbθ. (23)

The previous expressions are well defined only for discrete values of the azimuth
θ = θU , θL or more generally θ = θ0 +mβ with m ∈ Z in which case the mean
part w0 does actually not depend on θ because of the periodicity postulated in
Eq. (21). For the zeroth harmonic there is no phase-lag and the chorochronic
relation Eq. (19) degenerates into wL

p,0(x, r, θL, t) = wU
p,0(x, r, θU , t).

The Fourier coefficients are computed by means of the moving average tech-
nique adapted from [9, 13] to handle multiple frequencies. The coefficients are
updated continuously at each time step until they reach a converged value. The
stability of the computations strongly depends on the update of the coefficients
and an under relaxation c t+δtp,k = (1− ηp,k)c tp,k + ηp,k c

t+δt
p,k with 0 ≤ ηp,k ≤ 1 is

often necessary [15]. A low value of the relaxation parameter ηp,k = 0.1 is set
by default to ensure a robust convergence and can be tuned for each spinning
mode and each harmonic.

The multichorochronic hypothesis actually assumes that the flow field on the
azimuthal boundaries is a linear superposition of different unsteady phenomena.
The aeroelastic vibration and blade row interaction phenomena described pre-
viously can both be taken into account as a superposition of two primary spin-
ning modes. Nonlinear effects arising from the interaction between the primary
unsteady phenomena appear as additional spinning modes with linear combi-
nations of the primary spinning modes’ frequencies and wave numbers. Such
spinning modes will be referred to secondary spinning modes later in the docu-
ment. The level of approximation of the flow field on azimuthal boundaries thus
depends on the number Nsp of spinning modes introduced and their relevance
with respect to the physics. Although the inclusion of the primary spinning
modes in the approximation is obvious, this is not the case for secondary spin-
ning modes which contribute more or less according to the prescribed pattern
of motion, to the operating point,... Since the secondary spinning modes in-
volved are a priori unknown, we restrict ourselves in the simulations to the
primary spinning modes and investigate the effects of the inclusion of the very
first secondary spinning modes identified from full annulus computations.

3.3 Spinning Modes Definition in a Vibrating Contrafan

The vibration frequency ωael has to be shifted if the perturbation induced
by the structural deformation is observed in another relative frame (i. e.
in another blade row) but the one in which the vibration is prescribed.
The spinning mode relative to the vibration indeed writes wp(x, r, θ, t) =∑
k <{cp,k(x, r)eik(ωaelt+ndθ)} but if the same mode is observed in another frame

of reference such that the azimuth is given by θ′ = θ − ∆Ωt, the spinning
mode becomes wp(x, r, θ

′, t) =
∑
k <{cp,k(x, r)eik[ωaelt+nd(θ′+∆Ωt)]}, hence the

frequency shift ω̃ael = ωael + nd∆Ω.

Besides the (shifted) vibration and blade passing frequencies associated to
the primary spinning modes mentioned in section 3.1, the flow field can ex-
hibit frequency combinations related to the secondary spinning modes which
characterize nonlinear interactions of the primary unsteady phenomena. This
mechanism of interaction and the Doppler effect induced by the change of rel-
ative frame has been explained by Silkowski and Hall [24] in the framework of
the linearized Euler equations for aeroelasticity.

We propose here the following general expressions of the frequencies and
wave numbers defining the different types of spinning modes involved in the
flow field resulting from the interaction between the vibration of the structure
with a prescribed nodal diameter and the blade passage effects induced by a
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single adjacent blade row:

ωp = ω(m,n) =
∣∣∣mω̃ael + nωadj > cur

∣∣∣, (24a)

κp = κ(m,n) = mnd + nNadj
b (24b)

with the shifted vibration frequency

ω̃ael = |ωael + χaelnd ∆Ω|. (25)

The indicator function χael is equal to 0 if the spinning modes are defined in
the relative frame of the vibrating blade row and is equal to 1 in other relative
frames to take into account the Doppler effect. The definitions of the blade
passing frequency ωadj > cur and of the relative velocity ∆Ω are those given in
section 3.1.2.

To sum up, the spinning modes are completely defined by the pair of integers
(m,n) ∈ Z×Z using the relations Eqs. (24) and (25), the number of harmonics
Nh,p for each spinning mode and the list of relaxation parameters ηp,k for the
update of the Fourier coefficients. The flow field on the boundaries is therefore
approximated by a set of spinning modes SP = {(m,n) ∈ E ⊂ Z×Z} such that
card(SP) = Nsp; the subset E is selected a priori and contains at least the pairs
(1, 0) and (0, 1) corresponding to the primary spinning modes. Subsets of the
spinning modes set SP can also be defined: the primary spinning modes set is
defined by SP1 = {(1, 0), (0, 1)} and corresponds to the vibration and the blade
passage phenomena whereas the secondary spinning modes set is defined by
SP2 = {(m,n) ∈ E2 ⊂ Z∗ × Z∗} with Nk

sp = card(SPk) and Nsp = N1
sp +N2

sp.
In practice the first harmonics only (m,n) ∈ {±1,±2}2 are considered since the
contribution of higher harmonics is often negligible [12, 24].

The previous description could be easily generalized in the case of N1
sp > 2

primary spinning modes and leads to the following definitions:

ωp = ω(n1, . . . , nN1
sp

) =

∣∣∣∣∣

N1
sp∑

m=1

nm ωp,m

∣∣∣∣∣, (26a)

κp = κ(n1, . . . , nN1
sp

) =

N1
sp∑

m=1

nm κp,m (26b)

where the frequencies ωp,m and wave numbers κp,m are those associated to the
primary spinning modes. One can then define the set SP1 containing all primary
spinning modes and N1

sp − 1 other subsets of interacting spinning modes SPk
such that:

SP1 = {(n1, . . . , nN1
sp

)|∃!i ∈ D s.t. ni = 1, nj = 0 if i 6= j}, (27a)

SPk = {(n1, . . . , nN1
sp

) ∈ Ek} for k = 2, . . . , N0
sp, (27b)

Ek ⊂ {(m1, . . . ,mN1
sp

)|∃F = {e1, . . . , ek}, ek 6= el for k 6= l, ek ∈ D,
s.t. mi ∈ Z∗ for i ∈ F,mj = 0 for j ∈ D \ F}, (27c)

D = {i ∈ N, 1 ≤ i ≤ N1
sp}. (27d)

SP =
⋃N1

sp

k=1SPk with Nsp = card(SP) =
∑N1

sp

k=1N
k
sp (27e)

As an example if the two blades were vibrating, one would have N1
sp = 3 with

ωp,m ∈ {ω(1)
ael , ωadj > cur, ω

(2)
ael} and κp,m ∈ {n(1)

d , Nadj
b , n

(2)
d }. The set of primary

spinning modes would be SP1 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and the secondary
and tertiary sets of spinning modes could be SP2 = {(1, 1, 0), (0, 1, 1), (1, 0, 1)}
and SP3 = {(1, 1, 1), (1,−1, 1), (1, 1,−1)}, hence a total number of spinning
modes Nsp = 9.
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Figure 1: Single pas-
sage configurations of
the contrafan. The
2.5D model is repre-
sented with the blue
slice. The monitor-
ing points for pressure
time histories are plot-
ted with orange and
blue spheres.

Table 2: Geometrical
parameters of the con-
trafan.

Parameter R0 R1

Blade count Nb,i [-] 10 14
Chord [mm] 118 105
Gap-to-chord ratio [%] 0.36 0.31
Stagger angle [ ◦] −47 47
Rotation speed Ωi [rpm] Ω0 Ω1

4 Results and Discussion

4.1 Configuration for 3D and 2.5D Models

Numerical results are presented for the VITAL (“enVIronmenTALly friendly
aero-engine”) contrafan designed as new engine architecture for noise and emis-
sion reduction [20]. The configuration is made up of two contra-rotating fans
with Nb,0 = 10 and Nb,1 = 14 blades and a splitter downstream. The geometri-
cal details of the configuration are given in table 2. Computations are performed
at 70% of the nominal speed for an intermediate throttling.

The 3D single passage model contains about 4.2 millions of control cells.
Computations are thus time consuming and a radial slice is extracted to work
initially with a lighter 2.5D model. The extracted mesh represented on the figure
1 inside the whole 3D domain includes only 3 cells along the radial direction
in the first row and 2 in the second row. The mesh does indeed not match on
both sides of the interrow plane and the sliding nomatch boundary condition
at the interface has to perform some 2D interpolations both in the radial and
azimuthal directions.

Though the flow field computed with the 3D and 2.5D models is slightly
different since the streamlines are artificially confined in the 2.5D model, the
general agreement is quite good as one can see on figure 2 where the pressure
field is compared. The main purpose of the 2.5D model is not to predict very

Figure 2: Comparison
of steady pressure fields
computed with the 2.5D
and 3D models.
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(a) 3D model, nd = 2

(b) 2.5D model, nd ∈ {0,±1,±2,±3,±4}

Figure 3: Modal defor-
mations of the first tor-
sion mode for several
nodal diameters.

accurately the physics but to compare computations on a single passage using
multichorochronic boundary conditions with full annulus computations which
can be performed in a reasonable time with this lighter model. Indeed, the
full annulus 2.5D model contains less than 1 millions of cells (that is barely a
quarter of the size of the 3D model on a single passage) whereas the full annulus
3D model would contain about 50 millions of cells.

Several monitoring points inside the fluid domain (14 points) and on the
blades surfaces (8 points for each blade) are selected to check the time histories.
Their location is represented by the orange and blue spheres on figure 1. For
each blade two probes are located in the fluid domain near the leading and
trailing edges; additional probes are also selected in the blocks on both sides
of the interrow and in the wake of the second row. Wall pressure probes are
distributed as follows on each blade surface: two probes at the leading and
trailing edges, two additional probes near the leading / trailing edges and two
other probes at the middle of the blade surfaces.

The flexibility of blade row R1 is described by the 1st torsion mode for the
nodal diameters nd ∈ {0,±1,±2,±3,±4}. The eigenfrequency, which slightly
depends on the nodal diameter, is about ωael = 545 Hz. Pictures of figure 3
show the amplified real and imaginary parts of the deflections for the 3D model
and the slices corresponding to the 2.5D model.

Preliminary simulations have been performed on the contrafan stage with
rigid blades to check that both the 2.5D and 3D models capture well the
blade passing frequencies given in section 3.1.2 with (multi)chorochronic bound-
ary conditions. Aeroelastic computations have also been performed with
(multi)chorochronic boundary conditions on the isolated blade row R1. In both
cases, the use of multichorochronic boundary conditions with only one spinning
mode (corresponding either to the blade passage or the vibration) reproduces
exactly the same time histories recorded by the different probes after the tran-
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Figure 4: Comparison
of pressure time histo-
ries computed with the
2.5D model on the full
annulus and on a sin-
gle passage using mono-
chorochronic or multi-
chorochronic boundary
conditions with only one
spinning mode.
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sient has vanished. Figures 4a and 4b show the agreement between the different
types of simulations.

The convergence with multichorochronic boundary conditions is longer be-
cause of the relaxation parameter η used to update the Fourier coefficients. It
is clearly visible from figure 4a that the convergence of the simulation for the
rigid stage performed with η = 0.1 is far longer compared to the “classical”
monochorochronic computation performed without any relaxation (i. e. η = 1).
On the contrary, the aeroelastic simulation for the isolated blade row performed
with η = 0.9 converges almost as quickly as the monochorochronic computation
(see Fig. 4b).

The spectra of the times histories are compared on figures 5a and 5b for the
two probes. The same peaks are identified from the computations with mono-
chorochronic or multichorochronic boundary conditions. For the rigid stage the
main frequencies are the fundamental blade passing frequency and its first har-
monics: the perturbations seen by the probes in R0 (like the point 03 e. g.)
oscillate at kωR1>R0

= kNb,1∆Ω = k × 2668 Hz with k ∈ N whereas the
perturbations seen by the probes in R1 (like the point 05 e. g.) oscillate at
kωR0>R1 = kNb,0∆Ω = k × 1906 Hz with k ∈ N. For the flexible isolated row,
the perturbations seen by the probes oscillate at kωael = k×545 Hz. Aeroelastic
computations performed on the isolated blade row have shown from the analysis
of the generalized aerodynamic forces that the contrafan is the least stable for
the nodal diameter nd = −2 (results are not shown here for conciseness).
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Figure 5: Comparison
of pressure spectra for
two probes computed
with the 2.5D model
on a single passage us-
ing monochorochronic
or multichorochronic
boundary conditions
with only one spinning
mode.

4.2 Full Annulus Computations

Full annulus computations are then performed on the stage configuration with
a prescribed vibration on the second blade row. The objective is to check if the
main spinning modes match up the first low harmonics of the combinations of
frequencies described in section 3.3.

The time history of the probe 03 plotted on figure 6a clearly reveals the
coexistence of at least two frequencies: the low vibration frequency ωael which is
the most prominent and the blade passing frequency ωR1>R0

(and its harmonics)
induced by the neighboring blade row R1 which modulates the response with a
lower magnitude. The trace of the vibration frequency in the time history of the
different probes in R0 highlights the significant influence of upstream traveling
pressure waves, even for an amplitude of vibration as small as q∗ = 10−3.
The maximal amplitude of the prescribed displacement Eq. (10) is therefore
‖upres(B0, t)‖ = max{ϕ<(x)q(t) + ϕ=(x)q(t) for (x, t) ∈ B0 × [0, 2π/ωael]} ∼ 1
mm, which is about 0.7% of the average blade height or about 3 times the tip
gap height.

The time history of the probe 05 in R1 plotted as an example on figure
6b is more erratic because of the complex interaction between the unsteady
phenomena (wake due to R0’s blade passage and vibration). The curve plotted
in orange for comparison is the pressure time history computed for the isolated
flexible row. It is dominated by the sole vibration frequency (and its harmonics)
and produces a far more regular response which is periodic. An important point
to notice here is that the forcing effect due to the wakes stemming from the first
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Figure 6: Comparison
of pressure time histo-
ries computed with the
2.5D model of the 360◦

flexible contrafan (nd =
0, q∗ = 10−3).
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blade row in the stage configuration clearly increases the pressure fluctuations
in the second row, the envelope of the oscillations being almost doubled for the
moderate amplitude of vibration considered.

We focus in the following on spectral analyses performed from the time his-
tories in order to identify the main frequencies (and consequently the spinning
modes) involved. We investigate briefly the influence of the amplitude and pat-
tern of the prescribed vibration (this latter being defined for a particular nodal
diameter) on the spectral contents of the pressure and generalized aerodynamic
forces time histories.

The spectral analyses are performed for each probe in a same blade row.
For each peak identified at a frequency fp, an average magnitude is computed
as F (fp) =

∑Nprobes

k=1 |F [p(Pk)](fp)|/Nprobes where F [p(Pk)] is the module of the
Fourier transform for the pressure recorded by the probe Pk. Peaks are identified
in an interval ranging from the maximal average value Fmax = max{F (fp), p =
1, . . . , Npeaks} to ςFmax where ς typically equals 1%. The limits of this interval
are represented by dashed gray lines on the plots and average peaks values
are indicated by gray crosses. A quantity called spectral density indicator is
finally defined as Sd =

∑Npeaks

p=1 F (fp)/Fmax on the interval of interest. The
spectral density indicator of a periodic signal with a single peak is Sd = 1 but it
increases when the magnitude of other peaks becomes significant. This quantity
will therefore be used a simple indicator of the signal complexity.

4.2.1 Influence of the Amplitude of Vibration for nd = 0

On figure 7a, the spectral analyses performed for each probe Pk in R0 highlight
the most significant frequencies contributing to the pressure time histories. The
main peaks are correlated to the spinning modes with respect to the frequencies
identified. Following the description of section 3.3 and the definition Eq. (24a)
of the pulsations associated to the spinning modes for the nodal diameter nd = 0
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Figure 7: Comparison
of pressure spectra com-
puted with the 2.5D
model of the 360◦ flex-
ible contrafan for the
nodal diameter nd = 0
and q∗ = 10−3.

considered here, it can be seen that the main spinning mode (1, 0) is indeed due
to the vibration with the pulsation ω̃ael = ωael. Amongst the other peaks with
a magnitude greater than ςFmax = 0.01F (fael), one can identify the spinning
modes associated to the blade passage and its harmonics (0, 1), (0, 2) and (0, 3),
but also some secondary spinning modes like (±1, n) with n ∈ {1, 2, 3} which
characterize the interaction between a harmonic of the blade passing frequency
and the fundamental frequency of vibration. Additional interactions (2, 1), (3, 1)
and (2, 3) also contribute to the response. The spectral content of the different
pressure time histories in R0 can therefore be approximated with the set of
primary spinning modes SP1 with few harmonics and with a set of secondary
spinning modes SP2 comprising at least the family (±1, n) with n ∈ {1, 2, 3}.

The same analyses are performed for each probe Pk in R1 and the result
is plotted on figure 7b. Here again the main spinning mode (1, 0) corresponds
to the vibration and its harmonics (m, 0) for m ∈ {2, 3} also contribute signif-
icantly, as well as the spinning mode associated to the blade passage and its
harmonics (0, n) for n ∈ {1, . . . , 4}. The spectral density indicator Sd is a bit
higher for this blade row since the wakes convected downstream interact strongly
with the vibration of the second blade row; the magnitudes of the peaks corre-
sponding to the vibration (1, 0) and the blade passage (0, 1) are indeed of the
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Figure 8: Comparison
of pressure spectra com-
puted with the 2.5D
model of the 360◦ flex-
ible contrafan for the
nodal diameter nd = 0
and q∗ = 10−4.
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same order. The majority of the other peaks identified are secondary spinning
modes of the type (±m,±n) for m,n ∈ {1, 2, 3}.

On can however notice the presence of other peaks which can be related to
the interaction between the blade passing frequency of the adjacent blade row
ωR0>R1

and the blade passing frequency of the current blade row ωR1>R0
. These

frequencies do not correspond to the spinning modes described by Eq. (24a) and
cannot be interpreted with the interaction mechanism proposed by Silkowski
and Hall [24]. One should therefore define N1

sp = 3 primary perturbations with
ωp,m = {ω̃ael, ωadj>cur, ωcur>adj} and use the more general definitions Eq. (26)
to take these additional secondary spinning modes into account. In the present
case the spinning modes (0, 1,−1) and (0, 2,−1) could be identified in this way.
However their magnitude is very small compared to the main spinning mode
corresponding here to the vibration and such spinning modes could be neglected.

The results of the spectral analyses performed for a smaller amplitude of vi-
bration q∗ = 10−4 are plotted on figure 8. In the blade row R1, the magnitude
of the peaks due to the blade passage (spinning modes (0, n) for n ∈ {1, . . . , 4})
is unchanged since the perturbation due to the convection of the wakes down-
stream is not altered by changing the amplitude of vibration. However the
magnitude of the peak associated to the vibration (spinning mode (1, 0)) is
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q∗ = 10−4 q∗ = 10−3 q∗ = 2× 10−3

R0

2ωR1>R0 :100% ω̃ael :100% ω̃ael :100%
ωR1>R0 : 89% ωR1>R0 + 2ω̃ael : 12% ωR1>R0 + 2ω̃ael : 22%
ω̃ael : 83% 2ωR1>R0 : 11% ωR1>R0 : 6%

3ωR1>R0 : 41% ωR1>R0 : 10% ωR1>R0
+ 3ω̃ael : 5%

2ωR1>R0
− ω̃ael : 6% 2ωR1>R0

− ω̃ael : 6% ωR1>R0
+ ω̃ael : 5%

Sd : 3.6 Sd : 1.7 Sd : 1.7

R1

ωR0>R1 :100% ωael :100% ωael :100%
2ωR0>R1 : 43% ωR0>R1 : 76% ωR0>R1 : 38%
3ωR0>R1 : 15% 2ωR0>R1 : 32% 2ωael : 20%
ωael : 13% ωR0>R1

+ ωael : 17% 2ωR0>R1 : 16%
4ωR1>R0 : 5% 3ωR0>R1 : 11% ωR0>R1

+ ωael : 15%

Sd : 1.9 Sd : 2.9 Sd : 2.5

Table 3: Relative mag-
nitude of the 5 most
significant peaks in
the spectral analysis of
pressure time histories
for different amplitudes
of vibration.

clearly smaller since it is directly related to the amplitude of vibration1. This
results in a weaker spectral density for the blade row R1: the contribution of
the vibration is less pronounced and the response is dominated by the blade
passing effect. In the blade row R0, the magnitude of the peak due to vibration
also decreases linearly with the vibration amplitude q∗. In this case however
the magnitude associated to the spinning mode (1, 0) corresponding to the vi-
bration on one hand and to the spinning mode (0, n) for n ∈ {1, 2, 3} associated
to the blade passage on the other hand are now of the same order. This induces
more complicated interactions between the two phenomena than those observed
in the case q∗ = 10−3 for this blade row, with the appearance of frequency
combinations involving ωR0>R1

and ωR1>R0
. For extremely small amplitudes

of vibration the spectra would asymptotically converge to the rigid case in the
limit q∗ → 0 (see Figure 5a) since the magnitude of the peak associated to the
vibration would drop to zero.

For higher amplitudes of excitation, the vibration peak magnitude would
dominate. However an intensification of nonlinear effects is expected and the
spectral content could become extremely dense but the modal approximation
would no longer be valid. Table 3 summarizes the relative magnitudes of the 5
main peaks identified for different amplitudes of vibration. The spectral density
indicator is clearly larger when both the vibration and the blade passing effects
produce perturbations with similar magnitudes. This is the case in blade row
R0 for q∗ = 10−4 and in blade row R1 for q∗ = 10−3 as explained previously.
An important conclusion is that for moderate amplitudes of vibration, only a
few spinning modes could be considered to approximate the spectral content for
an excitation with the nodal diameter nd = 0. The relative magnitudes listed in
table 3 indicate that only the primary spinning modes contribute significantly
(F (fp)/Fmax ≥ 20 %). For a more detailed approximation (F (fp)/Fmax ≥ 10
%) some secondary spinning modes could be considered, but in this case only
the first harmonics (±m,±n) such that m,n ∈ {1, 2} are significant. It should
finally be mentioned that the same type of spectral analysis have been performed
for time histories of the relative Mach number and the entropy and reveal the
same type of spinning modes involved.

4.2.2 Influence of the Nodal Diameter

The same type of spectral analyses are performed for the non zero nodal diam-
eters nd = ±2. In this case, the vibration frequency observed in the blade row
R0 is shifted because of the Doppler effect. For the nodal diameter nd = +2,

1For such small amplitudes of vibration a linear dependence F (fael) = λq∗ of the vibration
peak magnitude with respect to the amplitude of vibration q∗ is expected. This is confirmed
by a careful observation of the plots on Fig. 7b and 8b.
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Figure 9: Comparison
of pressure spectra com-
puted with the 2.5D
model of the 360◦ flex-
ible contrafan for the
nodal diameter nd = +2
and q∗ = 10−3.
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Ñ
it

ω
ae

l
ω

0>
1
−
ω

1>
0

ω
0
>

1
−

2ω
ae

l

2ω
ae

l
ω

0>
1
−
ω

ae
l

3ω
ae

l

ω
0>

1

ω
0>

1
+
ω

ae
l

2ω
0
>

1
−

2ω
ae

l

ω
0>

1
+

2ω
ae

l
2ω

0
>

1
−
ω

ae
l

2ω
0>

1

2ω
0
>

1
+
ω

ae
l

2ω
0
>

1
+

2ω
ae

l
3ω

0
>

1
−
ω

ae
l

3ω
0>

1

3ω
0
>

1
+
ω

ae
l

4ω
0
>

1

Spectrum of pressure in bladerow r1

Point05
Point06
Point07
Point08

Point09
Point10
Point11
Point12

(b) Spectra of probes in R1

the shifted frequency is ω̃ael = ωael + 2∆Ω = 927 Hz. The main spinning modes
identified from the spectra plotted on figure 9 are again of the same type: the
primary spinning modes (m, 0) for m ∈ {1, 2, 3} and (0, n) for n ∈ {1, . . . , 5}
contribute mostly to the unsteady response and secondary spinning modes
(±m,±n) for m ∈ {1, 2, 3} contribute to a lesser extent.

For the nodal diameter nd = −2, the shifted frequency is quite low ω̃ael =
ωael−2∆Ω = 164 Hz. The same type of spinning modes is involved as shown on
the spectra plotted on figure 10, but the analyses now reveal in the blade row R0

some clusters of spinning modes centered around the blade passing frequency
and its harmonics: since the shifted frequency ω̃ael is low the secondary spinning
modes (±m,n) for m ∈ {1, 2} and n ∈ {1, 2, 3} are very close to the primary
spinning modes (0, n) for n ∈ {1, 2, 3}, hence this effect of clustering. This effect
is even more pronounced for nd = −3 since the shifted frequency is ω̃ael = 26 Hz.
Such a clustering effect could also appear if the (shifted) vibration frequency
(or a harmonic) is close to one of the blade passing frequencies. The simulation
of such cases is more challenging since a long time interval has to be computed
to capture correctly low frequency perturbations.

The relative magnitude of the 5 main peaks is listed for each nodal diameter
in table 4. For non zero nodal diameters, the primary spinning modes are still
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Figure 10: Comparison
of pressure spectra com-
puted with the 2.5D
model of the 360◦ flex-
ible contrafan for the
nodal diameter nd = −2
and q∗ = 10−3.

nd = 0 nd = +2 nd = −2

R0

ω̃ael :100% ω̃ael :100% ω̃ael :100%
ωR1>R0

+ 2ω̃ael : 12% ωR1>R0 : 52% ωR1>R0
+ 2ω̃ael : 28%

2ωR1>R0 : 11% 2ωR1>R0 : 37% ωR1>R0
+ ω̃ael : 28%

ωR1>R0 : 10% ωR1>R0
+ ω̃ael : 19% ωR1>R0 : 25%

2ωR1>R0
− ω̃ael : 6% 3ωR1>R0 : 15% 2ωR1>R0 : 20%

Sd : 1.7 Sd : 2.9 Sd : 2.5

R1

ωael :100% ωael :100% ωael :100%
ωR0>R1 : 76% ωR0>R1 : 46% ωR0>R1 : 35%
2ωR0>R1 : 32% 2ωR0>R1 : 36% 2ωR0>R1 : 27%

ωR0>R1 + ωael : 17% 3ωR0>R1 : 10% 2ωael : 10%
3ωR0>R1 : 11% ωR0>R1 + ωael : 5% 2ωR0>R1 + ωael : 8%

Sd : 2.9 Sd : 2.4 Sd : 2.4

Table 4: Relative mag-
nitude of the 5 most
significant peaks in
the spectral analysis
of pressure time histo-
ries for different nodal
diameters.
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∣∣∣ 20 Aeroelastic response of a single passage contrafan stage

Figure 11: Influence of
the amplitude and pat-
tern of vibration on
the generalized aerody-
namic force computed
on the reference blade
B0.
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(a) Influence of the amplitude of vibration q∗ ∈ {10−4, 10−3, 2× 10−3}
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(b) Influence of the pattern of vibration nd ∈ {0,±2}

prominent (F (fp)/Fmax ≥ 20 %) and have to be necessarily considered for the
approximation of the pressure time series. However the case nd = −2 involves
also secondary spinning modes with a significant contribution to the response
in the first blade row (up to 28% of the main peak). Such cases will be more
challenging for the single passage computations since additional spinning modes
have to be included to improve the approximation and to capture accurately the
interaction between the unsteady phenomena.

4.2.3 Generalized Aerodynamic Forces

One the main purposes of aeroelastic simulations is to evaluate the generalized
aerodynamic forces from which the aeroelastic stability can be assessed. This
quantity is defined below using the L2 inner product 〈·, ·〉L2 for complex valued
functions as the projection of the aerodynamic force on the structural mode
considered to prescribe the motion of the aeroelastic interface:

fag(t) = 〈ϕ(x),fa(x, t)〉L2 =

∫

x∈Γ

ϕ(x) · fa(x, t) ds = f<ag(t)− if=ag(t). (28)

The last relation is obtained by splitting the complex mode into its real
and imaginary parts ϕ = ϕ< + iϕ=. The aeroelastic interface which corre-
sponds to the blade surfaces is decomposed as Γ =

⋃Nb−1
k=0 Γk and the real (resp.

imaginary) part of the generalized aerodynamic force therefore writes using the
generic relation with C = < (resp. C = =):

fCag(t) =

Nb−1∑

k=0

fCag(Bk, t) =

Nb−1∑

k=0

∫

Γk

ϕC(Bk) · fa(Bk, t)ds. (29)

We focus in the following on the real (resp. imaginary) part of the general-
ized aerodynamic forces f<ag(B0, t) (resp. f=ag(B0, t)) computed on the reference
blade since the multichorochronic simulations performed on a single passage
only give this contribution to the global generalized aerodynamic force f<ag(t)

(resp. f=ag(t)).
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GAF type
nd = 0 nd = +2 nd = −2

q∗ =
10−4

q∗ =
10−3

q∗ =
2.10−3

q∗ =
10−3

q∗ =
10−3

Local 2.6 1.7 1.4 1.7 1.3
Global 1.1 1.0 1.1 1.1 1.1

Table 5: Spectral
density indicator of
the generalized aero-
dynamic forces for
several amplitudes and
patterns of vibration.

Figure 11a shows on one hand the influence of the amplitude of vibration on
the real part f<ag(B0, t) of the generalized aerodynamic force computed on the
reference blade only. The magnitude of the force increases with the amplitude
q∗ of the excitation since the contribution due to the vibration obviously plays a
more important role. Conversely for small amplitudes of vibration (q∗ = 10−4)
the vibration peak magnitude decreases but oscillations in the time history is
still significant because of the blade passing phenomenon. The spectral anal-
yses indeed highlight that the magnitude of the peak at ωael evolves almost
linearly with q∗, but the magnitude of the peaks associated to the blade pas-
sage ω0>1 and its harmonics remains constant whatever the amplitude since the
phenomenon is decorrelated from the vibration. The peaks associated to the
secondary spinning modes involving interactions between the vibration and the
blade passage are also directly correlated to the amplitude of vibration and van-
ish for very small amplitudes. On the other hand, figure 11b shows the influence
of the nodal diameter on the generalized aerodynamic force. The magnitude is
only slightly changed for the nodal diameters considered, but the spectral con-
tent and especially the phase of the time histories are significantly modified.
The phase with respect to the harmonic excitation has a direct influence on the
stability which therefore strongly depends on the pattern of vibration.

The same type of spinning modes are observed in the spectral analyses of the
generalized aerodynamic forces as the one described for pressure time histories.
The primary spinning modes corresponding to the vibration, the blade passage
and their first harmonics are predominant and should be sufficient to approxi-
mate satisfactorily the generalized aerodynamic forces with multichorochronic
computations. Secondary spinning modes should however be added for a more
accurate approximation when their magnitudes are of the same order as those
of the primary spinning modes.

Table 5 indicates the values of the spectral density indicator for the global
and local generalized aerodynamic forces. This quantity decreases when the
amplitude of vibration increases since the time history becomes mainly governed
by the vibration. For smaller amplitudes (e. g. for q∗ ≈ 10−4 and nd = 0) the
spectral density indicator is larger because both unsteady phenomena contribute
almost equally to the response. In the limit of extremely small amplitudes, the
response would be essentially governed by the blade passing frequency and its
harmonics and the spectral density indicator would thus converge to the value
obtained for the perfectly rigid case. The spectral densities are a bit smaller than
those computed from the pressure probes since the generalized aerodynamic
force is an integrated quantity which filters out locally complicated nonlinear
phenomena inducing a high spectral density. It can also be observed from table 5
that the spectral density indicator of the global generalized aerodynamic force is
always close to 1, which means that the time response is almost periodic. This
filtering effect comes from the summation of all the contributions fCag(Bk, t):
the spinning modes with wave numbers different from the nodal diameter of the
structural mode considered cancel out and the spinning mode associated to the
vibration frequency is consequently the only one remaining after the projection
on all blades.

This filtering effect is illustrated on figure 12 which shows the global and
local generalized aerodynamic forces plotted against the dimensionless ampli-
tude of vibration. When the response is linear (and thus periodic like the global
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Figure 12: Compar-
ison of the local and
global generalized
aerodynamic forces
computed on the refer-
ence blade or all blades
for q∗ = 10−3 and
nd = 0.
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generalized aerodynamic force in the present case) with respect to the harmonic
excitation, the Lissajous figures are elliptic. The local generalized aerodynamic
force exhibits on the contrary a nonlinear response with a much more compli-
cated limit cycle characterized by a kind of thick ellipse for an infinite time
interval. The Lissajous curve is also plotted on figure 12 for the isolated vibrat-
ing blade row R1. The response is in this case obviously periodic since the only
source of unsteadiness comes from the vibration. The magnitude, but above all
the phase of the limit cycle has changed, which means that the aeroelastic sta-
bility is different if the effect of the blade passage is taken into account or not.
The global generalized aerodynamic forces for the isolated and stage configura-
tions have been approximated by a sinusoid of the type A0 + A sin(ωaelt + ψ).
The blade passing effect induces an increase of about 14% of the amplitude A
and a change of the phase ψ of about 18%. Such differences can be amplified
depending on the nodal diameter considered, especially when the nodal diame-
ter of excitation coincides with the number of blades Nb,0 in the adjacent blade
row.

4.3 Single Passage Computations with Multichorochronic Boundary
Conditions

Computations are now performed on a single passage using multichorochronic
boundary conditions for which several spinning modes have to be given a pri-
ori to approximate the flow field. The spectral analyses performed previously
on the full annulus configuration have confirmed that few spinning modes are
predominant and should provide an accurate approximation. The influence of
different parameters related to the multichorochronic approximation is first in-
vestigated. Then single passage and full annulus computations are compared for
different nodal diameters and finally the influence of the relaxation parameter
on the convergence is illustrated on 3D computations.

4.3.1 Influence of the Number of Harmonics for nd = 0

The influence of the number of harmonics Nh,p considered for each spinning
mode (see Eq. (18)) is investigated here for the nodal diameter nd = 0. Only
the primary spinning modes (1, 0) and (0, 1) corresponding to the vibration
and the blade passage are considered; the set of spinning modes is therefore
SP = SP1 with Nsp = 2.

The time histories and spectral analyses of probes 03 and 05 in R0 and R1

respectively are presented on figures 13a and 13b. A zoom on a single vibration
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(a) Time history and spectra of probe 03 in R0
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(b) Time history and spectra of probe 05 in R1
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(c) Time history and spectra of the local generalized aerodynamic force

Figure 13: Influence of
the number of harmon-
ics Nh,p on the mul-
tichorochronic approxi-
mation using Nsp = 2
primary spinning modes
(nd = 0, q∗ = 10−3).

period is plotted to appreciate the small discrepancies on the time histories.
For each probe the agreement with respect to the full annulus simulation is
satisfactory for the time histories which are qualitatively well reproduced using
the multichorochronic approximation even with a number of harmonics as small
as Nh,p = 2. There is only little improvement when increasing the number
of harmonics beyond Nh,p = 8; low harmonics only indeed contribute signif-
icantly to the response as expected from the spectral analyses of section 4.2.
The accuracy of the multichorochronic approximation is evaluated by means of
the following averaged relative error formulated for continuous functions in the
L2([t0; t0 +T ]) Hilbert space embedded with the norm ||g||2

L̃2
=
∫ τ+Tael

τ
g2(τ)dτ

for L̃2 = L2([τ ; τ + Tael]) defined on a time window covering a vibration period

ε =
1

Nprobes

Nprobes∑

k=1

εPk
with εPk

=

∫ t0+T

t0

‖s(Pk, τ)− ŝ(Pk, τ)‖2L̃2

‖s(Pk, τ)− s(Pk)‖2L̃2

dτ (30)

where s(Pk, t) is an aerodynamic quantity (like the pressure) recorded by the
probe Pk, ŝ(Pk, t) is its multichorochronic approximation and s(Pk) is the time
average of s(Pk, t); the previously defined error is typically time-averaged on an
interval T = 50Tael covering a sufficiently large number of vibration cycles. The
error and the standard deviation σ =

∑
k(εPk

− ε)2/Nprobes are listed in table
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Table 6: Averaged rel-
ative error computed
from the time histo-
ries using an increas-
ing number of harmon-
ics Nh,p.

Nh,p Nsp nd ε±σ εGAF

2 2 0 18.4 %±9.7 % 10.0 %
8 2 0 9.6 %±4.4 % 2.8 %

16 2 0 6.4 %±3.3 % 1.4 %
32 2 0 7.5 %±2.8 % 1.9 %

6 for several number of harmonics Nh,p used in the approximation. The errors
are reduced when the number of harmonics increases from Nh,p = 2 to 16, but
it can be observed that increasing too much this parameters leads to a slight
increase of the error when Nh,p = 32.

The spectral analyses presented on figures 13a and 13b show qualitatively a
good agreement with respect to the full annulus computation. Apart from the
predominent peaks, the magnitudes of the other peaks are however often over-
or under-estimated. For such a simulation based only on the primary spinning
modes, one should expect a satisfactory accuracy on the magnitudes of the peaks
corresponding to these modes only. This is the case here since the magnitudes
for ωael, ω0>1, ω1>0 and their first harmonics are quite well captured. The
magnitudes of the secondary spinning modes are less well predicted since these
modes develop inside the fluid domain where the probes are located but they are
not propagated through the domain boundaries since they are not prescribed in
the multichorochronic approximation.

The multichorochronic computations tend to amplify the magnitude of cer-
tain spinning modes corresponding to complicated interactions (e. g. the peak
at ω1>0− ω̃ael−2ω0>1 in R0, see Fig. 13a) which are minor or even absent from
the spectral analysis of the full annulus computation. Such an amplification was
already observed with the single frequency chorochronic simulation of the rigid
stage (see Fig. 5a) where a series of peaks corresponding to ∆Ω and its harmon-
ics was amplified compared to the full annulus computation. This phenomenon
is a limitation of the multichorochronic approach since the robustness of the
simulation can be jeopardized if such artificial components are not contained.
For the present multichorochronic computation the phenomenon appears only
for Nh,p > 2 and a good practice for such simulations is to consider only a
relatively small number of harmonics, or to use a smaller relaxation parameter
ηp,k for higher harmonics k � 1. Besides it has been observed that if close fre-
quencies are included in the multichorochronic approximation the convergence
of the Fourier coefficients is poor. If two frequencies kiωp and kjωq are very
close, one of them is removed (preferably the highest harmonic ki if ki > kj).

The last plots on figure 13c present the time histories and spectra of the
local generalized aerodynamic force. The agreement is also very good even with
few harmonics. The values of the relative error computed with an expression
similar to Eq. (30) with s(t) = f<ag(B0, t) are given in table 6. The error decreases
significantly when the number of harmonics increases until Nh,p = 16 and then
increases slightly for Nh,p = 32.

4.3.2 Influence of the Number of Spinning Modes

Additional modes corresponding to the main peaks identified from full annulus
computations are now included to improve the multichorochronic approxima-
tion. A first simulation with Nsp = 2 is based on the set of primary spinning
modes SP1 = {(1, 0), (0, 1)}. In view of the full annulus computations (see table
3), a second simulation is performed with a multichorochronic approximation
using Nsp = 4 spinning modes in each blade row comprising the set SP1 and
such that SP2 = {(1, 1), (2, 1)} in R0 and SP2 = {(1, 1), (1, 2)} in R1. A third
simulation using Nsp = 8 spinning modes comprising the set SP1 and such that
SP2 = {(1, 1), (−1, 1), (2, 1), (−2, 1), (1, 2), (−1, 2)} in R0 and R1 is finally con-
sidered. The number of harmonics for secondary spinning modes is always set
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(a) Time history and spectra of probe 03 in R0
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(b) Time history and spectra of probe 05 in R1
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(c) Time history and spectra of the local generalized aerodynamic force

Figure 14: Influence of
the number of spinning
modes Nsp on the mul-
tichorochronic approxi-
mation (nd = 0, q∗ =
10−3).

to Nh,p = 1.

A single period of the time histories and the spectral analyses are plotted on
figure 14a and 14b for two probes. The time response is improved with Nsp = 4
instead of Nsp = 2 spinning modes, but as expected in view of the spectral
analyses summarized in table 3, there is only little change when increasing the
number of spinning modes from Nsp = 4 to 8 since the magnitudes of the sec-
ondary peaks are much smaller. The values of the errors listed in table 7 quan-
tify this slight improvement compared to the approximation with Nsp = 2 and
Nh,p = 8. The agreement is also excellent for the local generalized aerodynamic
force which is plotted on figure 14c, even with only Nsp = 2 spinning modes.
Here again the complicated linear frequency combination ω1>0 − ω̃ael − 2ω0>1

is amplified as the number of spinning modes is increased. As a conclusion, a
small number of spinning modes Nsp = 2 and harmonics Nh,p ≤ 8 is preferably
used to avoid the introduction of artificial spectral content.

The accuracy of the multichorochronic approximation is finally investigated
for nd = ±2. The time histories and spectra are plotted on figures 15 and 16
for the probe 03 located in R0 and the generalized aerodynamic force. The
frequency shift caused by the Doppler effect is well captured in the time history
of probe 03 for both nodal diameters. Once again the accuracy of the approx-
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Figure 15: Influence of
the number of spinning
modes Nsp on the mul-
tichorochronic approxi-
mation (nd = +2, q∗ =
10−3).
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(a) Time history and spectra of probe 03 in R0
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(b) Time history and spectra of the local generalized aerodynamic force

Figure 16: Influence of
the number of spinning
modes Nsp on the mul-
tichorochronic approxi-
mation (nd = −2, q∗ =
10−3).
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(a) Time history and spectra of probe 03 in R0
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Ñ
it ω
ae

l
ω

ae
l

2ω
ae

l
ω

0
>

1
−
ω

ae
l ω

0>
1

ω
0>

1

ω
0
>

1
+
ω

ae
l

2ω
0
>

1
−
ω

ae
l 2ω

0>
1

2ω
0>

1

2ω
0
>

1
+
ω

ae
l

3ω
0
>

1
3ω

0
>

1

4ω
0
>

1

(b) Time history and spectra of the local generalized aerodynamic force
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Nh,p Nsp nd ε±σ εGAF

8 2 0 9.6 %±4.4 % 2.8 %
8 4 0 5.0 %±2.3 % 1.7 %
8 8 0 5.0 %±2.5 % 1.7 %

4 2 +2 20.1 %±17.7
%

1.0 %

4 4 +2 12.6 %±10.0
%

0.7 %

4 6 +2 12.6 %± 9.7
%

0.7 %

4 2 −2 17.6 %±17.0
%

2.3 %

4 4 −2 12.2 %± 9.8% 1.4 %
4 6 −2 12.3 %± 9.9% 1.4 %

Table 7: Averaged rel-
ative error computed
from the time histo-
ries using an increas-
ing number of spinning
modes Nsp.

imation is improved when the number of spinning modes is increased and the
agreement is satisfactory for the time histories of pressure and even excellent for
the generalized aerodynamic force. However the magnitudes of some secondary
spinning modes are difficult to capture, even if the corresponding modes are ex-
plicitly prescribed in the multichorochronic approximation. Some complicated
frequency interactions are here again over-estimated compared with full annulus
computations when the number of spinning modes becomes large. These dis-
crepancies are nevertheless minor for aeroelastic purposes since the error on the
generalized aerodynamic force prediction with the multichorochronic approxi-
mation is less than 3% for the different nodal diameter considered (see table
7).

4.3.3 Influence of the Relaxation Parameter for 3D Computations

Simulations with the 3D model are very time consuming since they are parame-
terized so as to obtain a sufficiently long converged time history from which an
accurate spectral analysis with a frequency resolution δf = (Ñitδt)

−1 . O(10)

Hz can be performed. The total number of iterations Nit = Ntrans + Ñit com-
prises Ntrans iterations corresponding to the transient after which a converged
quasi-periodic state covering Ñit iterations is reached and can be used for the
spectral analysis. However the speed of convergence is characterized by the
length of the transient Ntrans which directly depends on the relaxation param-
eter η. Assuming that the convergence depends linearly on the relaxation pa-
rameter, if Ntrans is the number of iterations for the transient in an ideal case
(η = 1.0), then the length of the transient increases as Ntrans/η when 0 < η ≤ 1.
Increasing the relaxation parameter is therefore a clever way to shorten the tran-
sient but a compromise has to be found since too large values may hinder the
convergence.

An illustration of the generalized aerodynamic force transients is given on
the left of figure 17 for η = 0.1, 0.5 and 0.9. The convergence to a quasi-
periodic state is reached much more quickly with η = 0.9 than with η = 0.1.
The convergence of local quantities like the pressure on a given probe can be
a bit longer than the one given roughly here for the generalized aerodynamic
force. Once the convergence is reached, the time history is the same whatever
the value of η. This is confirmed by the spectra plotted on the right showing a
good agreement whatever the value of the relaxation parameter η. In the present
case the simulation is stable even with η = 0.9 since the primary spinning modes
only are considered. Lower values of the relaxation parameters should be used
if more spinning modes are considered, at least for the secondary modes. In
this case the transient would inevitably increase but one can expect a better
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Figure 17: Comparison
of generalized aerody-
namic force transients
and spectra for different
values of the relaxation
parameter η.
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accuracy of the solution.
Such a simulation of the 3D model performed with only 8 processors requires

a CPU time of about 22 days if the relaxation parameter is set to η = 0.1 and
the target frequency resolution is δf ∼ 5 Hz. Half of the CPU time is however
spent to converge the solution. Increasing the relaxation parameter to η = 0.9
for example shortens the transient and spectral analyses can be performed with
the same frequency resolution from a computation which only requires a CPU
time of about 12 days.

The transient would be even shorter with a full annulus computation since
the flow is not approximated on the boundaries and there is no need to converge
some Fourier coefficients. However the full annulus computation would monop-
olize about 100 processors of a cluster if an equivalent parallelization of the 3D
model was considered. The single passage computation with multichorochronic
boundary conditions provides thus a good compromise between the accuracy
of the solution and the resources required (number of processors, memory and
CPU time).

5 Conclusion

In this paper a multichorochronic approximation of the flow field on the bound-
aries of a single passage turbomachinery stage has been investigated in the time
domain using RANS equations. A detailed analysis of the spectral content of
such aeroelastic computations with stage effects has been performed to identify
the main spinning modes contributing to the response. Accurate solutions have
then been obtained using a much smaller single passage model instead of the
large full annulus model. It has been shown that even with a small number
of spinning modes and harmonics, the generalized aerodynamic forces are out-
standingly well reproduced for the different nodal diameters considered in this
paper. Further work will need to investigate the potential of this approach for
other operating points and configurations and also to derive an expression of
the global generalized aerodynamic forces from the local expression provided
by such single passage simulations so that the aeroelastic stability of the whole
blade row could be assessed while taking into account the stage effects using a
single passage model.
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