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Abstract
This paper aims to study the nonlinear response of a stiffened functionally graded
plate in supersonic flow. To model the geometrically nonlinear behavior of the stiffened
panel, the von Karman large deflection plate theory is employed and the stiffener which
is placed on the plate in different positions is modeled by using the Euler-Bernoulli
beam theory. These two structural models are coupled to each other via a pair of
action-reaction forces. The plate is in the supersonic regime and the quasi-steady first
order piston theory is utilized to estimate the aerodynamic pressure induced by the
supersonic flow. By using the Hamilton’s principle the nonlinear partial differential
equations of the stiffened panel are obtained. These partial differential equations are
converted to ordinary differential equations by using the Galerkin’s method which
then solved by numerical integration. It is found that by using the stiffeners, the
onset of flutter and also the limit cycle oscillation amplitude of the system changes
dramatically and the rate of this change extremely depends on the volume fraction
index of the plate made of functionally graded materials and the plate aspect ratio.
Moreover, the effect of number of stiffeners on the aeroelastic behavior of FG panel
is studied and it is clarified that by increasing the number of stiffeners, the flutter
boundary increases.

1 Introduction

Panel flutter is a classical and important problem in the field of aeroelasticity
which is studied by many researchers. When a surface of an aerial vehicle being
subjected to supersonic flow it may start to oscillate. The value of the dynamic
pressure in which the surface starts to oscillate is called the critical dynamic
pressure. The value of critical dynamic pressure is determined by simple linear
models while the post critical response of the system can only be examined by
nonlinear theories. In this study, the nonlinear structural model is used for
capturing the nonlinear post-instability of the panel.
The nonlinear response of supersonic panels in terms of limit cycle oscillation
has been considered by many authors. Among all studies in this field, the first
and the most important ones were the study of nonlinear oscillation of simply
supported fluttering plates which was considered by Dowell [6, 7]. These works
have been continued by considering the nonlinear flutter of doubly curved panels
[8, 9]. The results confirmed that the stream-wise curvature has a destabilizing
effect on the onset of instability. Weiliang and Dowell [24] investigated the limit
cycle oscillation of a cantilever plate. They used a Rayleigh-Ritz approach and
showed that the length to width ratio of the cantilever has a significant effect
on the flutter instability of panels. All these studies were dedicated to isotropic
materials while nowadays their usage has been limited and modern materials
used more commonly.
One of the current methods used often to enhance the structural strength of
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aerial vehicles and also to keep their weight as low as it can be, is to use the
composite materials. Thought composite materials have many advantages, they
are suffering from some disadvantages. Therefore, in order to overcome these
disadvantages, functionally graded materials (FGMs) was proposed [18]. The
FGM materials are widely used in advanced air vehicle structures [16] and re-
ceived more attentions in recent aeroelastic studies. The aeroelastic analysis
of functionally graded panels has been considered by many researchers and a
comprehensive review of the literature in this field is beyond the scope of this
paper. Therefore, here only some important studies will be highlighted. The
nonlinear transient thermoelastic analysis of functionally graded ceramic-metal
plates was considered by Praveen and Reddy [20]. They showed that the plate’s
response is not the average of the response of the ceramic and the metal plates
when the material properties are between those of ceramic and metal. Feld-
man and Aboudi [10] investigated the buckling of FGM plates subjected to
uniaxial loading. They showed that the buckling load improved by using the
functionally graded materials as compared to the corresponding uniformly rein-
forced plates. The effect of thermal stresses on the supersonic flutter behavior
of functionally graded flat panels was investigated by Prakash and Ganapathi
[19] by using the finite element procedure. They highlighted the influence of
aerodynamic damping and thermal gradient on the flutter behavior of function-
ally graded plates. Haddadpour et al. [11] studied the nonlinear post flutter
response of a functionally graded plate by using the Galerkin’s method and
showed by using FGM materials instead of pure metal materials, the instability
margin of the plate is enhanced. Thermal flutter characteristics of functionally
graded ceramic/metal panels under the thermal and aerodynamic loads were
investigated by Sohn and Kim [22]. The results indicated that by increasing
the volume fraction, the critical aerodynamic pressure increases and the limit
cycle amplitude decreases. Navazi and Haddadpour [17] considered the para-
metric study of the nonlinear aero-thermoelastic behavior of functionally graded
plates. They investigated the effects of different parameters on the nonlinear
aeroelastic behavior of FG flat plates and highlighted that for in-plane loading
of functionally graded plates with temperature-independent material properties,
the Mori-Tanaka scheme may result to lower stability capacity than by the sim-
ple rule of mixture. Supersonic flutter of functionally graded open conical shell
plates with clamped and simply supported edges has been considered by Davar
and Shokrollahi [5]. They showed that the discrepancies between the results of
the first order shear deformation and classical shell theories in determining the
critical aerodynamic pressure are higher than for determining the frequencies.
Shahverdi et al. [21] investigated the aero-thermo-elasticity of FG plates by
using the generalized differential quadrature method. They showed that their
proposed numerical solution has very accurate results in accordance with its low
computational efforts.
The other way to enhance the strength of a structure without having weight
penalty in engineering applications is to use the stiffeners instead of increasing
the thickness of the whole structure. This way is very common in aerospace
structures and the effects of adding stiffeners to the structural must be inves-
tigated in terms of structural stability and dynamics. There are some papers
concerning this type of studies. Liao and Sun [15] investigated the flutter in-
stability of stiffened and non-stiffened laminated composite plates and shells
in supersonic flow by using the finite element method. It was concluded that
the subtended angle, lamination scheme, skew angle, and number and position
of the stiffeners affect the flutter instability of plates and shells. The effect of
stiffener size and the fiber orientation angle on the flutter onset of the stiffened
anisotropic laminated and isotropic panel was determined by Lee and Lee [13].
Lee at al. [14] studied the linear and nonlinear thermal flutter of a stiffened
composite panel subjected to supersonic flow using FEM. They showed that
the proper stiffening scheme can result in better flutter characteristics. The
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Figure 1: Stiffened
panel geometry

aeroelastic behavior of stiffened laminated composite panels in supersonic flow
has been considered by Zhao and Cao [25]. This study is important because of
the method used for adding the effect of stiffeners to the governing equations.
They developed a new analytical model to consider the effect of the stiffener on
the plate behavior. This is done by considering a pair of acting and reacting
forces. Vibration and dynamic stability of stiffened plates subjected to in-plane
harmonic edge loading by FE method were studied by Srivastava et al. [23].
They highlighted that the instability margin of the system varies by considering
or neglecting the in-plane displacement. Kaihua and Zhiping [12] investigated
the nonlinear aeroelasticity of stiffened composite panels in supersonic aerody-
namic flow. They used the finite element method along with Bogner-Fox-Schmit
elements and determined that the stiffening scheme has significant effect on the
flutter critical dynamic pressure.
In the present study, the aeroelastic stability and limit cycle oscillations of stiff-
ened FG plates are investigated for the first time. In this regards, the system of
panel and stiffener is modeled by using the von-Karman large deflection plate
and the Euler-Bernoulli beam theory, respectively. These two models are cou-
pled to each other by a pair of action-reaction forces and are considered to be
subjected to the supersonic flow. Finally, a computer program which is used the
Adams-Moulton’s method to solve the nonlinear coupled ordinary differential
equations, is developed to determine the effect of stiffeners on flutter onset and
post flutter response of functionally graded panels.

2 Governing Equations

A functionally graded plate with a merged stiffener as shown in Fig. 1 with
length a, width b and thickness h has been considered here. The plate is sub-
jected to a supersonic flow along the x direction and is strengthen by one or
more stiffeners which are placed on the backside of the plate, parallel to the
airflow. It is of note that the stiffener, regardless of its shape, affects the panel
by its area and moment of inertia and therefore in this study the shape of the
stiffener is not a concern. The stiffener length, width, and height are denoted
here as a, bs and hs, respectively.

In order to consider the effect of the stiffener on dynamical equations of the
panel, the deformation compatibility between the panel and the stiffener is con-
sidered. As shown in Fig. 2, the panel and the stiffener coupled to each other
by a pair of action-reaction forces denoted as f1(x,t) and f2(x,t) ( [25]).

As it was stated before, the governing equations of the panel and the stiff-
ener determined based on von Karman large deformation plate theory and the
Euler-Bernoulli beam theory, respectively.
Based on the Kirchhoff hypothesis, the displacements (u, v, w) of the panel are
given as:
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Figure 2: Schematic of
the panel-stiffener action-
reaction forces

u(x, y, z, t) = u0(x, y, t)− z ∂w0(x, y, t)

∂x

v(x, y, z, t) = v0(x, y, t)− z ∂w0(x, y, t)

∂y

w(x, y, z, t) = w0(x, y, t)

(1)

where u0, v0 and w0 are the middle surface displacement components along the
x, y and z directions, respectively.
The nonlinear von Karman’s strain-displacement expression for the panel are:

εxx =
∂u0
∂x

+
1

2
(
∂w0

∂x
)2 − z ∂

2w0

∂x2

εyy =
∂v0
∂y

+
1

2
(
∂w0

∂y
)2 − z ∂

2w0

∂y2

εxy =
1

2
(
∂u0
∂y

+
∂v0
∂x

+
∂w0

∂y

∂w0

∂x
)− z ∂

2w0

∂x∂y

(2)

The stress-strain relations are expressed by the Hooke’s law as:σxxσyy
σxy

 =

Q11 Q12 0
Q12 Q22 0

0 0 Q66


 εxx
εyy
2εxy

 (3)

where, the stiffness coefficients, Qij , are:

Q11 = Q22 =
E(z)

1− ν(z)2

Q12 =
ν(z)E(z)

1− ν(z)2

Q66 =
E(z)

2[1 + ν(z)]

(4)

and E(z) and (z) are Young’s modulus and Poisson’s ratio of the FG panel
defined as follow ([4]):

E(z) = (EC − EM )(
2z + h

2h
)n + EM

ν(z) = (νC − νM )(
2z + h

2h
)n + νM

(5)

where, n is the volume fraction exponent and subscripts C and M refer to the
ceramic and the metal properties of the FG panel, respectively.
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The equations of motion are derived using Hamilton’s principle:∫ T

0

(δK − δU + δV )dt = 0 (6)

where δU , the virtual strain energy, δV , the virtual work done by aerodynamic
forces and stiffener action and δK, the virtual kinetic energy, are given by ([25]):

δU =

∫
A0

∫ h/2

−h/2
(σxxδεxx + σyyδεyy + 2σxyδεxy)dzdxdy

δV =

∫
A0

[f1(x, t)δ̃(y − ξ)bsδW (x, ξ,−h/2)−∆pδW (x, y, h/2)]dxdy

δK =

∫
A0

∫ h/2

−h/2
ρ(z)[(u̇0 − z

∂ẇ0

∂x
)(δu̇0 − z

∂δẇ0

∂x
)+

(v̇0 − z
∂ẇ0

∂y
)(δv̇0 − z

∂δẇ0

∂y
) + ẇ0δẇ0]dzdxdy

(7)

where in these equations the Dirac delta function (δ̃ ) and ξ are used in order
to precisely consider the location and properties of the stiffener, A0 is the plate
area and ρ(z) is the density of the FG panel ([4]):

ρ(z) = (ρC − ρM )(
2z + h

2h
)n + ρM (8)

Also, f1(x,t) is the acting force induced by transverse vibration of the stiffener,
and may be defined as the Euler-Bernoulli beam vibrational equation ([25]):

f1(x, t) = −f2(x, t)

EsIs
∂4ws(x, t)

∂x4
+ ρsAs

∂2ws(x, t)

∂t2
= f2(x, t)

(9)

where Es, Is, ρs and As are Young’s modulus, the mass moment of inertia,
density and cross section area of the stiffener, respectively. The transverse dis-
placement of the neutral axis of the stiffener is denoted here by ws . By consid-
ering the deformation compatibility which was mentioned earlier, the stiffener
mid-surface displacement will be:

w(x, y, t)|y=ξ = ws +
hs
2

(1− cos(α)) (10)

where α is the rotational displacement of the stiffener and based on the assump-
tion that the displacement of the mid-plane of the stiffener in the z direction is
small compared to its thickness approximately is equal to zero ([25]).
On the other hand, the aerodynamic pressure loading based on the quasi-steady
first order supersonic piston theory is ([3]):

∆p =
2q

β
[
∂w(x, y, z)

∂x
+ (

M2 − 2

M2 − 1
)

1

V∞

∂w(x, y, z)

∂t
] (11)

where

β =
√
M2 − 1 (12)

and

q =
1

2
ρaV

2
∞ (13)

and ρa is the density of air and V∞ is the air speed.
By substituting Eqs. 2 and 3 into Eq. 7 and transferring the results into Eq.
6, the variation form of the Hamilto-nian in terms of displacement variations
can be derived. By setting the coefficients of the virtual displacements δu0, δv0
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and δw0, to zero, the governing equations of motion can be obtained in terms
of displacements for three-dimensional FGM plates as follow:

A11(
∂2u0
∂x2

+
∂w0

∂x

∂2w0

∂x2
) +A12(

∂2v0
∂x∂y

+
∂w0

∂y

∂2w0

∂x∂y
)−B11(

∂3w0

∂x3
)

−B12(
∂3w0

∂x∂y2
) +A66(

∂2u0
∂y2

+
∂2v0
∂x∂y

+
∂w0

∂y

∂2w0

∂x∂y
+
∂w0

∂x

∂2w0

∂y2
)

− 2B66(
∂3w0

∂x∂y2
) = I0ü0 − I1

∂ẅ0

∂x

(14)

A66(
∂2u0
∂x∂y

+
∂2v0
∂x2

+
∂2w0

∂x2
∂w0

∂y
+
∂w0

∂x

∂2w0

∂x∂y
) +A12(

∂2u0
∂x∂y

+
∂w0

∂x

∂2w0

∂x∂y
)

− 2B66(
∂3w0

∂x2∂y
) +A22(

∂2v0
∂y2

+
∂w0

∂y

∂2w0

∂y2
)−B12(

∂3w0

∂x2∂y
)−B22

∂3w0

∂y3

= I0v̈0 − I1
∂ẅ0

∂y

(15)

B11(
∂3u0
∂x3

+
∂2w0

∂x2
∂2w0

∂x2
+
∂w0

∂x

∂3w0

∂x3
) +B12(

∂3v0
∂x2∂y

+
∂2w0

∂x∂y

∂2w0

∂x∂y

+
∂w0

∂x

∂3w0

∂x2∂y
)−D11(

∂4w0

∂x4
)− 2D12(

∂4w0

∂x2∂y2
)− 4D66(

∂4w0

∂x2∂y2
)

−D22(
∂4w0

∂y4
) + 2B66(

∂3u0
∂x∂y2

+
∂3v0
∂x2∂y

+
∂3w0

∂x2∂y

∂w0

∂y
+
∂2w0

∂x∂y

∂2w0

∂x∂y

∂2w0

∂x2
∂2w0

∂y2
+
∂w0

∂x

∂3w0

∂x∂y2
) +B12(

∂3u0
∂x∂y2

+
∂2w0

∂x∂y

∂2w0

∂x∂y
+
∂w0

∂x

∂3w0

∂x∂y2
)

+B22(
∂3v0
∂y3

+
∂2w0

∂y2
∂2w0

∂y2
+
∂w0

∂y

∂3w0

∂y3
) + N̄(w0)

− 2q

β
[
∂w0

∂x
+ (

M2 − 2

M2 − 1
)

1

V∞
ẇ0] + f1(x, t)δ̃(y − ξ)bs

I0ẅ0 − I2(
∂2ẅ0

∂x2
+
∂2ẅ0

∂y2
) + I1(

∂ü0
∂x

+
∂v̈0
∂y

)

(16)

where Aij ,Bij and Dij are the extensional stiffness, the bending-extensional
coupling stiffness , bending stiffness and mass moment of inertias and may be
expressed as:

(Aij , Bij , Dij) =

∫ h/2

−h/2
Qij(1, z, z

2)dz; i, j = 1, 2, 6

(I0, I1, I2) =

∫ h/2

−h/2
ρ(z)(1, z, z2)dz

(17)

and the nonlinear in-plane load operator appeared in Eq. 15, N̄(w0), is ([1]):

N̄(w0) =
∂

∂x
(Nxx

∂w0

∂x
+Nxy

∂w0

∂y
) +

∂

∂y
(Nxy

∂w0

∂x
+Nyy

∂w0

∂y
) (18)

where Nxx, Nxy and Nyy are the force resultants determined.

3 Solution Methodology

The boundary conditions of the plate is assumed to be simply supported along
all edges with the following conditions:
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Young’s modulus (Gpa) Density (kg/m3) Poisson’s ration

Aluminum 70 2700 0.3
Zirconia 151 3000 0.3

Table 1: Material prop-
erties of Aluminum and
Zirconia

u0 = v0 = w0, Mx = 0 at x = 0, a

u0 = v0 = w0, My = 0 at y = 0, b
(19)

The trial functions that satisfy these boundary conditions can be written as:

u0(x, y, t) =

∞∑
i=1

∞∑
m=1

aim(t) sin(
iπx

a
) sin(

mπy

b
)

v0(x, y, t) =

∞∑
j=1

∞∑
m=1

bjm(t) sin(
jπx

a
) sin(

mπy

b
)

w0(x, y, t) =

∞∑
k=1

∞∑
m=1

ckm(t) sin(
kπx

a
) sin(

mπy

b
)

(20)

where i and m are the number of modes in the x and y directions, respectively.
Based on the literature, in this study four stream-wise (x direction) modes and
one span-wise (y direction) mode are retained ([7]) for the aeroelastic analysis.
By substituting the modes assumed in Eq. 20 into the Eqs. 14-16, and then
applying Galerkin’s procedure and multiplying each part of these equations by
the same mode shape and integrating over the panel area, one obtains a set of
nonlinear ordinary differential equations in the time domain that in compact
form can be written as follow:

Mq̈ + Cq̇ + K(q)q = 0 (21)

where q is the vector of unknown parameters, M, C and K are the resultant
mass matrix, damping matrix and stiffness matrix, respectively.
Let consider a vector as:

y = [a11, ˙a11, b11, ˙b11, c11, ˙c11, ..., ai1, ˙ai1, bi1, ˙bi1, ci1, ˙ci1] (22)

then Eq. 21, can be written in the following form:

ẏ = Ay + f(y) (23)

This first order nonlinear ODE can be solved by numerical integration method.
In this study, the Adams-Moulton’s method has been used to integrate the non-
linear differential equations.

4 Numerical Results

The FGM panel is made of Aluminum and Zirconia with the material properties
listed in Table 1, and the stiffener is considered to be made of Aluminum.
Due to numerical usefulness, the results will be presented in non-dimensional

form. The non-dimensional para-meters used throughout the paper are:

ξ = x/a, η = y/b, λ =
2qa3

βD11M
, h∗ = hs/h, b

∗ = bs/b

To check the accuracy of the proposed model and also verifying the developed
program, the post flutter time responses of FGM plates are determined and
the limit cycle amplitudes are compared with the results of Haddadpour et al.
[11] for an infinitely long plate in Fig. 3. As it can be seen, a good agreement
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Figure 3: Non-
dimensional limit cycle
amplitude versus non-
dimensional dynamic
pressure parameter, λ

Table 2: Comparison of
the natural frequencies of
the stiffened panel (Hz)
with h = 6.33e − 3m, l =
0.41m, b = 0.6m,hs =
22.22e − 3m, bs =
12.7e − 3m,E =
2.11e11N/m2, ρ =
7.83e3Kg/m3, ν = 0.3

Mode Aksu [2] present Err. %

1 254.94 255.59 0.25
2 269.46 266.47 -1.1
3 511.64 502.6 -1.7

between the results is observed.
On the other hand, to check the validity of the structural dynamic characteris-

tics of the panel with stiffener, the three first natural frequencies of the stiffened
panel are compared with the results presented by Aksu [2] and reported in Table
2. It is noted that the natural frequencies of the stiffened panel are calculated
by determining the eigenvalues of the linearized system of Eq. 21 about the
equilibrium point y=0. It is obvious from this table that the dynamic charac-
teristics of the developed model are in good agreement with those obtained in
[2]. Small differences come from the fact that in the present study the effect
of in-plane inertia, torsional stiffness, and warping of the cross section of the
stiffener are neglected. It is worth mentioning that in this part of the paper
to capture the second and third natural frequencies of the stiffened panel, four
span-wise (y direction) and four stream-wise (x direction) modes are retained
in the Galerkin’s procedure.
In order to check the convergence of the developed code for different number of

stream-wise modes, the instability onset dynamic pressure for different values of
m has been calculated and reported in Table 3. Here the panel is considered to
be square with one centrally spaced stiffener, and the width and the thickness
of the stiffener are b∗ = 0.02 and h∗ = 10, respectively. As it is clear here,
for a stiffened panel by considering four stream-wise modes, the results were
generally converged within 1% error.
Fig. 4 shows the non-dimensional limit cycle amplitude versus non-dimensional

dynamic pressure, for various plate aspect ratios, (a/b), for volume fraction
exponents n = 5. By increasing the plate aspect ratio, the critical dynamic
pressure increases and a small increase in the aerodynamic pressure results in a
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M.R. Amoozgar, H. Shahverdi and H.R. Ovesy
∣∣∣ 9

m λcr

2 782.08
3 1058.92
4 1002.4
5 1015.65
6 1012.6
8 1012.27
10 1012.31

Table 3: Galerkin ap-
proach results for dif-
ferent mode numbers of
a stiffened panel (b∗ =
0.02, h∗ = 10)

Figure 4: Non-
dimensional limit cycle
amplitude versus non-
dimensional dynamic
pressure parameter, λ,
for n=5 and various plate
aspect ratios, a/b

noticeable increase in the limit cycle amplitude.
Unless otherwise noted, the forthcoming results are related to a square stiffened

panel (a/b = 1), and the LCO amplitudes correspond to the point (0.75a, 0.5b)
which is the critical point of oscillation.
Fig. 5 demonstrates the LCO amplitude of a FGM plate without stiffener for
various volume fraction exponents. This plot will be considered as a base for
comparison with following figures depicted to show the effects of adding stiffen-
ers on the dynamic behavior of the system.

In the following sections, the effect of different parameters such as stiffener
width, stiffener thickness, and number of stiffeners on both critical dynamic
pressure and limit cycle amplitude of the stiffened panels with different aspect
ratios are presented. The effect of the non-dimensional stiffener height on the
limit cycle amplitude and the critical dynamic pressure of the panel are shown
in Figs. 6 and 7 for various volume fraction exponents, respectively. The ampli-
tude of the limit cycle oscillation is diminished by increasing the stiffener height.
But in a certain range of the stiffener height, this reduction in the amplitude
is more pronounced. The same trend is experienced among all volume fraction
exponents. On the other hand, it is seen that the volume fraction exponent
plays a decisive role in shifting the critical stiffener height at which a drastic
drop in the amplitude is experienced. Fig. 7 demonstrates the critical dynamic
pressure of the stiffened FG panel versus non-dimensional height of the stiffener
for various volume fraction exponents. It is deduced that by increasing the stiff-
ener height, the critical dynamic pressure of the panel increases for all volume
fraction exponents. It is noted that in a certain region of the stiffener height,
the dynamic pressure increases very rapidly and this region strongly depends

ASDJournal (2017) Vol. 5, No. 1, pp. 1–16
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Figure 5: Non-
dimensional limit cycle
amplitude versus non-
dimensional dynamic
press parameter, λ, for
various volume fraction
exponents

on the values of volume fraction exponent, n.
The effect of the non-dimensional stiffener width on the non-dimensional

limit cycle amplitude, and the critical dynamic pressure of the stiffened panel
are shown in Figs. 8 and 9, respectively. As it is clear, by increasing the stiff-
ener width, the LCO amplitude of the panel decreases for all fraction exponents.
Therefore by widening the stiffener cross-section, the nonlinear aeroelastic post
instability response of the panel can be improved. Fig. 9 describes the change
of critical flutter dynamic pressure of the panel with respect to the variation of
the stiffener width for various volume fraction exponents. The critical dynamic
pressure of the panel enhances by increasing the width of the stiffener.

The effects of stiffener height and width on the critical dynamic pressure of
FG panels for various aspect ratios are investigated, and reported in Figs 10 and
11, respectively. The volume fraction exponent of the FGM panel is assumed
to be n = 5. Fig. 10 demonstrates the variation of critical dynamic pressure
with respect to the stiffener height for four different aspect ratios, and Fig. 11
shows the variation of critical dynamic pressure of the panel for different stiff-
ener width values. As it can be seen, the increase in the aspect ratio results in
an increase in the critical dynamic pressure. Moreover, for higher aspect ratios,
the variation of critical dynamic pressure with respect to the stiffener height,
and width is more pronounced, when compared to the same variation but for
the lower aspect ratios.

In Fig. 13, the limit cycle amplitude of the panel for various numbers of
stiffeners has been depicted. It is clear that by increasing the number of stiffen-
ers, the non-dimensional limit cycle amplitude of the panel changes. Moreover,
the critical dynamic pressure of the panel increases by increasing the number of
stiffeners. It must be noted that here the stiffeners are located in equal lengths
along the y direction as shown in Fig. 12.

The effect of stiffener height on limit cycle amplitude of the FG panel for
different number of stiffeners is shown in Fig. 14. By increasing the stiffener’s
height, the non-dimensional limit cycle amplitude decreases and the rate of this
reduction strictly depends on the number of stiffeners. It is noted that for small
values of stiffener height, the number of stiffeners does not have a significant
effect on the LCO amplitude while for larger values, the number of stiffeners
affects the amplitude dramatically.
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Figure 6: Effect of
stiffener height on
non-dimensional limit
cycle amplitude for
various volume frac-
tion exponent and for
λ = 1000, b∗ = 0.02

Figure 7: Effect of stiff-
ener height on critical dy-
namic pressure for b∗ =
0.02
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Figure 8: Effect of stiff-
ener width on limit cycle
amplitude for various vol-
ume fraction exponents
and for λ = 1000, h∗ = 5

Figure 9: Effect of stiff-
ener width on critical dy-
namic pressure for h∗ = 5
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Figure 10: Effect of stiff-
ener height on critical dy-
namic pressure for various
aspect ratios when b∗ =
0.02, n = 5

Figure 11: Effect of stiff-
ener width on critical dy-
namic pressure for various
aspect ratios when h∗ =
5, n = 5

Figure 12: schematic of
the stiffeners position
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Figure 13: limit cy-
cle amplitude of the FG
panel for various numbers
of stiffeners when b∗ =
0.025, h∗ = 3, n = 5

Figure 14: Effect of
stiffener thickness and
number of stiffeners on
non-dimensional limit
cycle amplitude for
λ = 1000, b∗ = 0.025
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5 Conclusion

The nonlinear limit cycle oscillation of functionally graded stiffened plates was
studied in supersonic flow regime. The von Karman large deflection plate the-
ory along with the Euler-Bernoulli beam theory and the piston theory were
employed to establish the governing aeroelastic equations of a stiffened panel.
The resultant aero-elastic equations were solved by using the Galerkin’s method
and a numerical time marching method. By consi-dering all effective parameters
of the system, the following points can be concluded:
The introduction of a stiffener into the FG panel affects both the limit cycle
amplitude and the flutter margin of the FG panel, and the stiffener is much
more effective for plates with higher aspect ratios and lower volume fraction
exponents.
The height and the width of the stiffener have significant effects on the limit
cycle amplitude of the FGM panel for all volume fraction exponents. However,
the rate of variation of the critical dynamic pressure is dramatically dependent
on the volume fraction exponents, stiffener number, height, and width and by
increasing the number, height, and width of stiffeners, the critical dynamic pres-
sure increases.
The optimum height and width of the stiffener to obviate the flutter onset of
the FG panel is strongly depends on the volume fraction exponent, and there-
fore for an accurate instability investigation of the stiffened FG panels, all these
parameters (stiffener dimensions, number, and volume fraction exponent) must
be taken into account simultaneously.
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