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Abstract
For aeroelastic analyses in the industrial context, the Doublet Lattice Method (DLM)
is a widely used method since it provides conservative results with low computational
effort. However, the DLM lacks in predicting discontinuous transonic phenomena
(shock positions and intensity) and effects of complex three-dimensional geometries.
Several other authors have established the need for an improvement of the DLM results
with CFD or experimental data while preserving its advantage of low computational
costs. The introduction of small-disturbance CFD aerodynamics into the aeroelastic
analysis process led the way to combine an enhanced accuracy of the aerodynamics
combined with a moderate computational effort. However, linearized CFD methods
are still unhandy to use in the development process of a configuration since they are
inflexible to design changes of the configuration. Therefore, the authors present a
correction method to enhance the quality of DLM results by introducing few results
from the small-disturbance CFD method AER-SDEu developed at the Institute of
Aerodynamics at the Technical University of Munich. The method employs densely
populated, diagonal dominant correction matrices to correct the downwash or the
forces of the DLM based on an equality between the forces predicted by the corrected
DLM and the CFD method. This leads to a significantly higher quality of the DLM
results, even throughout potential design changes. The developed correction method
is applied to two well-known configurations, namely the AGARD Wing 445.6 (weak.
3) and the Goland+ Wing.

Nomenclature

AIC Matrix of aerodynamic influence coefficients
cp Pressure coefficient
cr Root chord
f , g, h Convective fluxes in cartesian coordiantes
F, G, H Convective fluxes in curvilinear coordiantes
fSD Vector of disturbance forces from AER-SDEu
FSD Matrix of disturbance forces from AER-SDEu
G Spline interpolation matrix
GAF Matrix of generalized aerodynamic forces
I Unity matrix
kred Reduced frequency
Ma∞ Free-stream Mach-number
p, p∞ Pressure, free-stream pressure
q Vector of conservative variables in cartesian coordinates
Q Vector of conservative variables in curvilinear coordinates
S Diagonal matrix of box areas (DLM)
U∞ Free-stream velocity
w Downwash vector
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W Downwash matrix
Wa, Wb Matrices with aerodynamic data from methods a and b
x, y, z Cartesian coordinates
ξ, η, ζ Curvilinear coordinates

Superscript

() Steady part

(̂) 1st order harmonic disturbed quantity

1. Introduction

Because of its robustness and low computational costs, the Doublet Lattice
Method (DLM) [1] is a commonly used method for aeroelastic analyses (flutter
and gust) of aircraft configurations for industrial applications. Especially during
the development process of an aircraft, where the conceptual design undergoes
substantial modifications, the advantages of the DLM regarding fast availability
of the results and robustness of the modeling become relevant. However, the
results of the DLM lack accuracy in predicting shock phenomena (intensity and
position of shocks) and modeling complex three-dimensional structures (wing
thickness and camber effects, complex fuselage structures, external stores, a.s.o.)
[19]. Keeping in mind that such phenomena and configurational details can be
crucial for the aeroelastic behavior of the aircraft, various nonlinear, unsteady
CFD methods have been developed for conducting aeroelastic analyses includ-
ing transonic flow effects and the full three dimensional aircraft configuration in
the sense of a CFD method. Such fully unsteady CFD methods deliver results
of high accuracy, but require excessive computational effort. Thus, linearized
CFD methods (from Kreiselmaier and Laschka[15], Pechloff and Laschka [20]
and Thormann and Widhalm [24]) have been developed to combine the advan-
tages of computational savings of the DLM with the accuracy of CFD methods
for aeroelastic application. As an example, the small disturbance Euler-method
AER-SDEu has been applied to a wide range of simple to highly complex con-
figurations for flutter and gust analyses (see Kreiselmaier and Laschka [15] ,
Fleischer and Breitsamter [6] and Vidy et al. [25]).

Although linearized CFD methods provide exceptional computational sav-
ings compared to fully unsteady CFD methods (up to ten times faster), they
are unhandy to be used during the development process since they are inflexi-
ble to design changes of the aircraft configuration. The present paper therefore
presents a method to correct modal DLM results for an aircraft configuration
with modal small disturbance CFD results obtained from AER-SDEu. The
correction is intended to enhance the quality of the DLM results in its com-
mon application range of the flight envelope (including limited transonic ef-
fects) while reducing the computational effort compared to purely CFD-based
methods. Thereby, a densely populated, diagonal dominant correction matrix is
used to correct the results obtained from DLM. A densely populated correction
matrix is employed, since several other approaches have proven that a purely
diagonal correction matrix prevents the method to correct the results qualita-
tively (e.g. [8], [13]). The robustness and applicability of the presented method
is increased by the possibility to include several modes through a fully populated
correction matrix. Correction matrices are computed for different values of re-
duced frequency kred and Mach numbers Ma∞. Thus, the correction matrices
for other values of kred and Ma∞ can be obtained through interpolation.

The given paper first delivers a short outline of both, the DLM and AER-
SDEu as a representative method for small disturbance CFD approaches. Af-
terwards, the general approach to the development of the correction factors is
presented, followed by the detailed application to the aforementioned methods.
Results for the AGARD Wing 445.6 (weak. 3) and the Goland+ Wing demon-
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strate the applicability of the developed correction method and its significant
advantages w.r.t. computational savings and accuracy in the process of aircraft
development.

2. Aerodynamic Methods

The following section gives a short overview over the aerodynamic methods
used in the present paper. Although the developed correction technique can
be applied to a range of aerodynamic methods, it is presented in a form to
correct results from unsteady potential methods with results from linearized
CFD methods. Since it is commonly used in industrial aeroelastic analyses, the
Doublet Lattice Method from Albano and Rodden [1] is chosen as a representa-
tive method for linear unsteady potential methods. The linearized CFD method
AER-SDEu from the Technical University of Munich is selected as a representa-
tive linearized CFD code, since it was used to gain a lot of experience analyzing
configurations from airfoils to wings and full configurations [15, 6, 7, 25].

2.1 Doublet Lattice Method (DLM)

The DLM is a linear, unsteady potential method based on the Integral Equation
of Unsteady Lifting Surface Theory and was introduced by Albano and Rodden
[1]. Founded on unsteady potential theory, it describes an unsteady, inviscid and
irrotational flow neglecting nonlinear effects. Hence, it does not consider shock
effects, boundary layer separations, a.s.o. Furthermore, the method does not
include the influence of three-dimensional geometries as thickness and camber
effects or complex three dimensional structures.

The Integral Equation of Unsteady Lifting Surface Theory provides a relation
between the induced unsteady downwash field ŵ and the unsteady pressure
distribution ∆ĉp of the configuration. Thereby, the lifting surface is modeled
with several aerodynamic panels together assembling the whole lifting surface.
The panels themselves consist of a finite number of boxes, where each box is
a trapezoidal element with the parallel edges arranged in streamwise direction.
The Integral Equation of the Lifting Surface Theory is solved on each box.

The downwash vector ŵ is known from the geometry of the configuration
and the free flow velocity through the kinematic flow condition (cf. Blair [3])
applied to the 3/4-points of the configuration (the so called Pistolesi-Point).
The method is based on the acceleration potential represented by doublets ar-
ranged on the quarter-line of each box. Assuming harmonic motion, the integral
equation for each box reads (cf. Blair [3])

ŵ(x, y, z) =
1

8π

∫∫
A

∆ĉpK(x, ξ; s, σ;ω,Ma∞)dσdξ, (1)

with the complex Kernel-function (cf. Blair [3])

K(x0, y0, z0) = exp

(
−iωx0
U∞

)

· ∂
2

∂z2

 x0∫
−∞

1

R
exp

[
iω

U∞β2
(λ−Ma∞R)

]
dλ

 . (2)

The kinematic flow condition has to be satisfied at as many points as dou-
blets are arranged. Thus, a system of equations develops with the number of
equations equal to the number of boxes. The system of equations writes

∆ĉp = AICŵ (3)

with the matrix of aerodynamic influence coefficients AIC.
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The generalized aerodynamic forces (GAFs) are then computed using

GAFij =

n∑
k=1

hik∆ĉjp,kSk. (4)

with n being the number of boxes, hik the deformation normal to the panel at

the quarter point of box k for mode i, ∆ĉjp,k the pressure difference coefficient

on the quarter point of box k for mode j and Sk being the surface area of box
k. Further details on the Doublet-Lattice-Method are given by Rodden [1].

2.2 Small Disturbance Euler Method (AER-SDEu)

The small-disturbance Euler-method AER-SDEu was developed at the Institute
of Aerodynamics and Fluid Mechanics at the Technical University of Munich
to combine the accuracy of a CFD method with the computational savings
of linearized methods (cf. Kreiselmaier and Laschka [15]). The linearized CFD
results in frequency domain can then be used in aeroelastic analyses, e.g. flutter
analyses or gust response. A lot of experience has been gained with the method
since it has been applied to configurations of various complexity (cf. Vidy et al.
[25]).

Thereby, the method is based on a linearization of the Euler equations w.r.t.
time around a steady, nonlinear reference state computed with the nonlinear
method AER-Eu. Using this linearization, the method computes the disturbed
aerodynamic quantities resulting for small and harmonic motion of the config-
uration in the frequency domain. The generalized aerodynamic forces (GAFs)
are computed using the resulting disturbance pressures and the modal distur-
bance, i.e. the deflection. The advantage of the method compared to potential
methods are a higher accuracy of the results in the transonic flow regime (shock
phenomena) and the inclusion of geometric effects of the considered configura-
tion, e.g. wing thickness and camber. The following section provides an overview
over the linearization of the Euler equations and their numerical treatment in
AER-SDEu.

The Euler equations describe a system of five coupled, nonlinear, partial dif-
ferential equations of first order and hyperbolic character [10, 11]. They consist
of the differential equations describing the conservation of mass, momentum and
energy for an inviscid flow without thermal conduction. Since the airflow has six
degrees of freedom, the system of equations is closed by the ideal gas law. The
non-dimensional Euler-equations in vectorial form and curvilinear coordinates
can be written as

∂Q

∂τ
+
∂F

∂ξ
+
∂G

∂η
+
∂H

∂ζ
= 0, (5)

Using the conservative variables the system of partial differential equations
is closed by the ideal gas equation:

p = (κ− 1)

[
e− 1

2ρ

(
(ρu)

2
+ (ρv)

2
+ (ρw)

2
)]
. (6)

Splitting the unsteady coordinates and flow quantities into a steady reference
part and a disturbance part leads to the time-linearization of the Euler-equations
in eq. (5). Using a harmonic approach for the disturbance part in terms of this
linearization, the coordinates for harmonic motion can be written as

x(ξ, η, ζ, τ) = x(ξ, η, ζ) + x̂(ξ, η, ζ) · eikredτ (7)

In a similar way, the flow quantities can be written as
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Q = Q + Q̂ · eikredτ

F = F + F̂ · eikredτ

G = G + Ĝ · eikredτ

H = H + Ĥ · eikredτ

(8)

using the metrics with the Jacobi-determinant J in form of

J = J + Ĵ · eikτ . (9)

The disturbance part of the conservative variables in eq. (8) can be split into
an unknown part consisting of the disturbance part of the flow quantities and
the steady reference part of the metrics (superscript (1)). The remaining, known
part consists of the steady part of the flow quantities and the disturbance metrics
(superscript (2)). Assuming that the steady reference parts of the flow satisfies
the Euler-equations (eq.(5)), the linearized Euler-equation can be written in the
frequency domain, using eq. (7) to eq. (9):

∂Q̂(1)

∂τ
+
∂F̂(1)

∂ξ
+
∂Ĝ(1)

∂η
+
∂Ĥ(1)

∂ζ
=

−

(
Q̂(1)ikred + Q̂(2)ikred +

∂F̂(2)

∂ξ
+
∂Ĝ(2)

∂η
+
∂Ĥ(2)

∂ζ

)
.

(10)

The nonlinear Euler equations (eq.(5)) are solved with the numerical solver
AER-Eu, while the linearized Euler-equations (eq.(10)) are solved with AER-
SDEu. Both CFD solvers were developed at the Institute of Aerodynamics and
Fluid Mechanics at the Technical University of Munich [15]. Thereby, the small
disturbance solver AER-SDEu uses the steady, nonlinear reference solution from
AER-Eu and deformed meshes (to obtain the disturbed metrics) in order to
compute the disturbed flow quantities.

The numerical process for the solution of the nonlinear and the linearized
Euler-equations uses a cell-centered finite-volume method. In the given methods
AER-Eu and AER-SDEu, the control volumes are defined by hexahedral, struc-
tured CFD meshes. An Upwind Flux Difference Splitting scheme (see Roe [22])
is used for the discretization of the fluxes. A MUSCL-extrapolation provides
a second order spacial accuracy of the method (see Kreiselmaier and Laschka
[15]). The appearance of physically not plausible oscillations close to nonlin-
ear phenomena as shocks is eliminated by Total-Variation-Diminishing (TVD)
(cf. Blazek [4]). The method employs an implicit temporal integration with a
LU-SSOR method (cf. Kreiselmaier and Laschka [15] and Pechloff and Laschka
[20]).

Using the results from AER-Eu and AER-SDEu, the forces acting on a cell
center (ξm, ηm, ζm) of a CFD mesh cell due to harmonic motion of mode i can
be written as

fSD,i(Ma∞, ikred) = cp · dS + ĉp,i · dS + cp · d̂Si. (11)

Therefore, the disturbance part of the forces for a CFD mesh cell can be
written as

f̂SD,i(Ma∞, ikred) = ĉp,i · dS + cp · d̂Si. (12)

The complex generalized aerodynamic forces (GAFs) for mode j and gener-
alized with mode i can be computed using the disturbance forces from eq. (12)
and the modal deformation ẑi of mode i by
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GAFij(Ma∞,ikred) =

∫
S

cp · ẑi · d̂Sj

+ i ·
(∫

S

Re(ĉp,j) · ẑi · dS +

∫
S

Im(ĉp,j) · ẑi · dS

)
.

(13)

3. Development of a Correction Method

The Doublet-Lattice-Method is widely used in the industry to determine the
aeroelastic behavior of aircraft configurations. The method is applicable to con-
figurations of various complexity and is thereby robust, provides conservative
results and requires only little computational effort. This especially qualifies
the DLM for an application in development stages of new aircraft, where their
structural configuration and geometrical shape undergo significant changes. Al-
though linearized CFD codes as AER-SDEu are capable of providing results
of higher accuracy than the DLM and predict the aeroelastic behavior more
accurately [25], a lot of effort regarding the mesh generation and computations
is required, especially when the configuration is changed significantly. The au-
thors therefore propose a correction method to correct Doublet-Lattice unsteady
results with results from a linearized CFD method in this section.

Several other correction methods (see for example Giesing et al. [8] and
Jadic, Hartley and Giri [13]) show that a purely diagonal multiplicative correc-
tion matrix lacks the ability of changing the results qualitatively and to incor-
porate multiple modes. Thus, when the distribution of the results from both
methods differs qualitatively due to geometric effects or shock phenomena, a
purely diagonal correction matrix can not sufficiently improve the results of the
less accurate aerodynamic method. Other approaches for correction factor tech-
niques therefore suggest fully populated correction matrices (see Jadic, Hartley
and Giri [13]). Using fully populated correction matrices, these methods are
capable of changing the results quantitatively and qualitatively.

Since these correction methods do not have any constraints to the structure
of the correction matrix, it is possible that the off-diagonal terms become un-
reasonably high and qualitative distribution of the results may be changed in
an undesired or unphysical way. Therefore, the following approach employs a
fully populated, diagonal dominant correction matrix. The concept of a diago-
nal dominant correction matrix assures that qualitative corrections are as small
as possible and thus prevents unphysical distributions of the corrected values.
Furthermore it is possible to introduce the data of several modes into the cor-
rection. Computing this correction matrix, the method uses Doublet Lattice
results and small disturbance CFD results in the frequency domain. Thus, the
correction matrices are dependent on the reduced frequency kred and the Mach
number Ma∞.

The correction matrix is computed to equal the corrected DLM forces for
each box and the linearized CFD results splined on the DLM boxes. The correc-
tion matrix is thereby either applied to the downwash of the DLM (downwash
correction) or the forces of the DLM (force correction). Both approaches are
presented in this section. Results from AER-SDEu are chosen as representative
results for linearized CFD methods. However, the correction is also applicable
using other frequency domain CFD methods.

At first, the authors present a general approach to correct a matrix of re-
sults Wb from a particular aerodynamic method using a matrix of results Wa

obtained by an aerodynamic method of higher order. In both matrices, the
aerodynamic data is arranged column-wise. The indices a and b indicate the
two aerodynamic methods providing the results. Thereby, b denotes the method
to be corrected, while method a provides the higher order aerodynamic data for
the correction. In general, Wa and Wb are of the dimension n×m with n > m.
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3.1 Mathematical Approach

The correction is used to improve the accuracy of the results from the less
accurate aerodynamic method using a multiplicative correction matrix C in
form of

Wa = C · Wb (14)

The matrices are dependent on the reduced frequency kred and the Mach
number Ma∞:

Wa = Wa(Ma∞, kred),

Wb = Wb(Ma∞, kred)

C = C(Ma∞, kred).

(15)

Although not explicitly shown, the matrices are dependent on further aero-
dynamic parameters of the steady flight state as the angle of attack α and the
sideslip angle β. The correction matrix C is of dimension n× n.

As described above, the approach is based on diagonal dominant matrices.
Thus, the correction matrix can be written as

C = Λ + ∆ (16)

with

Λ =


λ1 0

λ2
. . .

0 λn

 . (17)

In eq. (16), Λ denotes the diagonal correction terms and ∆ describes the
off-diagonal terms of the correction. Λ and ∆ both are of dimension n × n.
To introduce a greater flexibility for the diagonal part of the correction, the
approach contains n various correction terms λi in a diagonal correction matrix
Λ.

In general, λi, Λ and ∆ are also dependent on the Mach number, the reduced
frequency and further aerodynamic parameters of the steady flight condition (as
for example α and β). Using eq. (16), the identity of the results of both methods
of eq. (14) can be written as

∆ · Wb = Wa − Λ · Wb with n > m. (18)

Eq. (18) describes an under-determined system of equations since n·m ≤ n2.
Therefore, a least-squares method is used to compute ∆ depending on Λ in order
to obtain C with the smallest deviation from a perfectly matching correction.
Employing a least-squares method in form of a Moore-Penrose Pseudo-Inverse
(cf. Moore[17] and Penrose[21]) leads to

∆ = (Wa − ΛWb) ·
[(

WH
b Wb

)−1]H
WH

b (19)

The diagonal part Λ of the correction matrix consisting of λ1 . . . λn is com-
puted using

ai =


Wa(i, 1)
Wa(i, 2)

...
Wa(i,m)

 (20)
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and

bi =


Wb(i, 1)
Wb(i, 2)

...
Wb(i,m)

 . (21)

Since ai = λibi, an over-determined least-squares regression problem is
solved by using a Gauss-transformation[27], leading to

Λ(Ma∞, kred) = diag

(
bHi ai
bHi bi

)
with i = 1, 2, . . . , n. (22)

Thus, a diagonal dominant, fully populated correction matrix can be ob-
tained by

C = Λ + (Wa − ΛWb) ·
[(

Wb)
HWb

)−1]H
WH

b . (23)

In sum, the correction matrix C consists of a diagonal correction obtained
from eq. (22) and an off-diagonal correction part obtained from a least squares
solution of the resulting residuals from the diagonal correction (see eq. (23)).

3.2 Correction of DLM Results with Small-disturbance CFD Aero-
dynamics

The general approach and the mathematics for a diagonal dominant correc-
tion matrix as presented above are now used to formulate an equation for a
correction matrix improving DLM results using modal small-disturbance CFD
aerodynamics in frequency domain from AER-SDEu. The approach emanates
from an equality of forces between the forces acting on the DLM panels modified
by the correction matrix and the forces acting on the CFD-mesh surface cells
splined onto the DLM boxes (see eq. (24)). Thus, a conservation of forces is
guaranteed. The correction matrix CW does not correct the forces itself, but
the matrix of downwash vectors for multiple modes of the DLM method (similar
to the so called postmultiplicative correction matrices described by Giesing et
al. [8]). An approach to correct the forces itself by using a correction matrix
CF is described and investigated additionally.

The equality of forces for the downwash correction writes

GTFSD = S · AIC · CW
W

U∞
, (24)

and for the force correction

GTFSD = CF · S · AIC
W

U∞
, (25)

with CW indicating the correction matrix for the downwash correction and
CF the correction matrix for the force correction. In eq. (24) and eq. (25),
S describes the diagonal matrix of surface areas of the DLM boxes, AIC the
matrix of aerodynamic influence coefficients obtained from the DLM and GT the
splining interpolation matrix used to interpolate the aerodynamic forces from
the CFD-mesh surface cells to the DLM boxes. S and AIC are of dimension
n × n, W is of the dimension n ×m, FSD is of the dimension l ×m and GT

is of the dimension n × l. Applied to a correction method between DLM and
CFD methods, n describes the number of DLM boxes, m denotes the number
of modes selected for the correction and l indicates the number of CFD-mesh
surface cells.

In eq. (24) and eq. (25), the matrix FSD consists of the modal data of
multiple modes from the small-disturbance CFD-method in form of

FSD = [fSD,1, fSD,2, . . . , fSD,m] . (26)
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Thereby, the correction only uses the parts of the disturbance forces from
eq. (12) resulting from the disturbance pressure distribution, namely

fSD,i = ĉp,i · dS (27)

for a single CFD mesh cell. Since the DLM does not compute the part of the
disturbance forces based on the steady pressure distribution, these parts are not
inherently present in the DLM. Nevertheless, they can be added to the DLM
through an additive correction term, which is not followed here. Furthermore,
GTFSD does only contain the parts of the splined disturbance forces normal to
the DLM panels to avoid the introduction of unphysical force distributions.

The matrix W consists of the downwash vectors for multiple modes of the
DLM in form of

W(kred) = [w1(kred),w2(kred), . . . ,wm(kred)] . (28)

The matrix W depends only on the reduced frequency.
Using the balance of forces described above, a conservation of forces normal

to the DLM panels is assured. A conservation of the moments around the three
axes can not be inherently guaranteed since only the forces normal to the DLM
panels are used. However, the losses in accuracy of the moments are expected
to be small, especially for Mx, because it is mainly influenced by these normal
forces. Despite these effects, a significant improvement of accuracy of the DLM
results is expected compared to the uncorrected DLM results.

Assuming that AIC and S are invertible in general, one obtains

AIC−1S−1GTFSD = CW
W

U∞
, (29)

for the downwash correction. The equation for the force correction remains as
written in eq. (25). The correction matrix for the downwash correction CW

can thus be obtained by

CW (Ma∞, kred) = Λ +

(
AIC−1S−1GTFSD − 1

U∞
ΛW

)
· 1

U3
∞

[(
WHW

)−1]H · WH

(30)

and the matrix CF for the force correction

CF (Ma∞, kred) =Λ +

(
GTFSD − 1

U∞
Λ · S · AIC · W

)
· 1

U3
∞

[(
[S · AIC · W]

H
[S · AIC · W]

)−1]H
· [S · AIC · W]

H
.

(31)

Thus, a correction matrix CW or CF is computed for each desired value
of the reduced frequency kred and Mach number Ma∞. The entries of the
correction matrices are complex values. The real part of the correction matrix
introduces a scaling of the real and imaginary DLM data, while the imaginary
part results from a phase shift between DLM and CFD data and thus corrects
the phase of the DLM data.

Using the approach described above, the correction matrices in general con-
sist of dominant diagonal entries and small off-diagonal entries. However, the
detailed structure of the matrices depends on the number and geometric prop-
erties of the modes used to compute the correction. Moreover, the structure of
the matrices varies with the Mach number and the reduced frequency. Since it is
possible to introduce literally any set of modes, the included modes should form
a modal base without linearly dependent modes. Furthermore,the combination
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of modes should at least contain one non-zero downwash entry for each box of
the DLM model. Thus, unreasonably high correction factors can be prevented.
In an ideal case, the modal data should be chosen to represent the flutter mech-
anism of the respective configuration for optimal correction results. However,
the authors already expect significant improvements through the correction even
when only modes similar to the flutter mechanism are used (e.g. plunge and
pitch rigid body modes).

Since several analyses showed that results for DLM aerodynamics and small-
disturbance CFD aerodynamics differ about 10 − 15% in the GAF-entries (cf.
Vidy et al. [25]), the authors expect diagonal entries of 0 ≤ CW (i, i) ≤ 2 and
0 ≤ CF (i, i) ≤ 2 with i = 1 . . . n in the correction matrices. Large correction
factors are expected at the leading edge of the wing and in areas with downwash
entries close to zero.

4. Results

The following section presents the application and the respective results of the
correction method developed in sec. 3.2 to two configurations, namely the
AGARD Wing 445.6 (weak. 3) and the Goland+ Wing.

4.1 AGARD Wing 445.6 (weak. 3)

The AGARD Wing 445.6 is a three-dimensional wing structure (half model)
providing wing thickness effects for the correction on its symmetric airfoil. Fur-
thermore, the flutter characteristics of the configuration show a significant drop
in flutter speed in the transonic flow regime (transonic dip) [14]. Since exper-
imental flutter data is available for the configuration [14] and the linearized
Euler-Code AER-SDEu has been applied to the configuration in the past (cf.
Fleischer et al. [7], Vidy et al. [25] and Fleischer [5]), the AGARD Wing 445.6
serves as a test case for the correction method.

The CFD mesh for the AGARD Wing was generated with Ansys ICEM CFD
as a two-block C-H topology with a total of 532480 mesh cells, of which 6768
cells represent the surface of the configuration. The off-body distance of the
first cell row is hOBD = 10−3 · cr. The surface mesh with the symmetry plane
is shown in fig. 1 a). The DLM model consists of 100 boxes with a distribution
of 10 boxes in spanwise direction and 10 boxes in chordwise direction. The
distributions are equally spaced in both directions. The DLM model is shown
in fig. 1 b). The boxes of the DLM model are numbered from 1 to 100 following
the numbering approach given in [18] . Details on the steady and unsteady
pressure distributions for various Mach numbers and reduced frequencies, the
flutter and gust results obtained with both methods are given by Fleischer and
Breitsamter [6] and Vidy et al. [25].

The deformed CFD meshes for the linearized CFD solver AER-SDEu are
generated with MatLab from the undeformed CFD mesh and the structural
eigenmodes from a FEM-computation with MSC-NASTRAN. Thereby, the de-
formations of the structural model are transferred to the CFD surface mesh
through a spline interpolation [26], and to the volume mesh through a transfi-
nite interpolation (TFI)[16] and a spring analogy [12]. The FEM model complies
with the structural characteristics of the wing defined by Yates [14].

At first, it is validated that the interpolation of the disturbance forces ob-
tained with the CFD method does not produce any unphysical force distribu-
tions on the DLM boxes. Afterwards, the distribution of the disturbance forces
from the DLM and AER-SDEu are compared to obtain a first assessment of the
structure of the correction matrix.

As an example, fig. 2 compares the real part of the disturbance forces for
the 2nd and 3rd elastic mode obtained with the DLM to the results obtained
with AER-SDEu splined onto the DLM model. Despite the high Mach number,
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the force distributions do not show any discontinuities. Furthermore, the force
distributions of both methods match qualitatively, which is expected to lead
to small off-diagonal terms in the correction matrix. Since the DLM assumes
large leading edge suction effects due to the neglect of thickness effects, the
DLM predicts forces of higher magnitude than AER-SDEu at the leading edge
of the configuration (see fig. 2). However, AER-SDEu predicts forces of higher
magnitude towards the trailing edge and the wing tip of the configuration (see
fig. 2). Since each diagonal entry directly belongs to a respective box of the
DLM model, these effects lead to the expectation of diagonal entries below one
(CW < 1) for leading edge boxes and diagonal entries above one (CW > 1) for
trailing edge boxes.

Correction matrices were computed using the approach of sec. 3.2 for
the Mach numbers Ma∞ = 0.499, 0.678, 0.901, 0.954, the reduced frequencies
kred = 0.0, 0.01, 0.1, 0.3, 0.5, 1.0, 3.7 and several combinations of modes. The
latter are listed in tab. 1. Fig. 3 shows the correction matrices obtained for
Case 3 of tab. 1 for different Mach numbers and kred = 0.5 in their real and
imaginary part. The matrices show a diagonal dominant structure for all Mach
numbers with small off-diagonal terms, even though several modes are included.
The behavior of the diagonal entries regarding the leading edge and trailing edge
force distribution of both methods is as expected. The diagonal entries corre-
sponding to the first row of DLM boxes at the symmetry planes show changes
of sign with large amplitude. These characteristics result from the fact that
the elastic modes show downwash entries close to zero for these boxes, since
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Table 1: Mode com-
binations applied for
the correction method
on the AGARD Wing
445.6 (weak. 3)

Case Mode Combination

Case 1 pitch mode
Case 2 1st bending, 1st torsional mode
Case 3 pitch mode, 1st bending, 1st torsional mode
Case 4 pitch mode, first five elastic modes

the model is clamped to the symmetry plane and shows no modal deformation
there for the elastic modes.

Fig. 4 shows a comparison of the diagonal entries of the downwash correction
matrices for all cases of tab. 1. Again, each diagonal entry directly belongs to
a respective box of the DLM model. Case 1 predicts a smoother distribution of
the correction factors for the first boxes than the other cases, since it does not
show downwash entries close to zero for these boxes. For the boxes representing
the center and outer wing, the diagonals match for all cases of tab. 1. It can
be noticed that the imaginary entries for Case 1 show greater peaks for boxes
assigned to the leading edge and thus introduce a greater phase shift there.

Fig. 5 presents the GAF entries for the first three elastic modes of the
AGARD Wing obtained with DLM results, AER-SDEu results and downwash
corrected DLM results for Case 3. Deviations can be noticed between the DLM
results and the AER-SDEu results. The correction has the effect of enhancing
the accuracy of the DLM GAFs towards the accuracy of the AER-SDEu GAFs.
While the effect is not as strong for other modes, the enhancement can especially
be observed for GAF entries of modes which are used as training modes for the
correction (fig. 5).

The flutter mechanism of the AGARD Wing is basically a bending-torsion
flutter with the coalescence of the first bending and the first torsional mode.
Flutter frequencies obtained with DLM and AER-SDEu are plotted in form of
the Flutter Frequency Ratio (FFR) [14] in fig. 6. The flutter mechanism can
be predicted correctly with results from the DLM as well as from AER-SDEu.

Using the corrected generalized aerodynamic forces (GAFs) for all cases with
the force and downwash correction respectively, the flutter characteristics of the
configuration are determined with a p-k-flutter-method. The flutter results
are computed for flight conditions of Ma∞ = 0.499, 0.678, 0.901, 0.954 and the
corresponding air densities given in [14]. The results are presented in comparison
to DLM and AER-SDEu in fig. 6 for the downwash correction and in fig. 7 for
the force correction. It can be noticed that the Flutter Speed Indices (FSI) [14]
differ around 10% between the DLM and AER-SDEu. The downwash correction
as well as the force correction close this gap between both methods and enhance
the quality of the DLM results towards the results of AER-SDEu. Thereby, the
corrected results match the results of AER-SDEu with high accuracy in their
numerical values and their distribution. The transonic dip is captured by the
downwash and the force correction for all cases as shown in fig. 6 a) and 7 a).

The downwash correction matches the SD results for all cases with high ac-
curacy. The force correction provides results of comparable accuracy for the
cases, which represent the flutter mechanism correctly (Cases 2-4). Although
Case 1 correctly captures the distribution of the SD results regarding the tran-
sonic dip, it shows the largest deviations to the SD results numerically. These
observations also hold true for the Flutter Frequency Ratio (FFR) [14] (fig. 6
b) and 7 b)). Both, the downwash and the force correction correctly capture
the flutter mechanism for the various flight conditions.

Thus, the downwash correction predicts the flutter behavior of the config-
uration with high accuracy, even if only rigid body aerodynamic data in the
frequency domain and no information on the aerodynamics of elastic deforma-
tions is available. The force correction does only enhance the quality of the
results, when the selected modal data represents the flutter mechanism cor-
rectly. Therefore, the downwash correction is better suited for the development
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Figure 4: Diagonal
entries of the down-
wash correction matrix
for Cases 1-4 for
the AGARD Wing
for Ma∞ = 0.954,
kred = 0.5
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Figure 6: Flutter
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DLM, AER-SDEu and
the downwash corrected
DLM results for Cases
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Figure 7: Flutter
Speed Index and Flut-
ter Frequency Ratio
using the GAFs of
DLM, AER-SDEu and
the force corrected
DLM results for Cases
1-4 for the AGARD
Wing
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Wing

process of an aircraft, since it significantly enhances the quality of the flutter
results even without knowledge of the exact structural behavior of the configu-
ration.

4.2 Goland+ Wing

The Goland Wing provides a configuration with sharp leading and trailing edge
on its symmetric, parabolic airfoil in a low transonic flow regime (see Goland [9]).
A lot of experience has already been gained with the application of numerical
methods to the Goland Wing configuration (see Beran et al. [2] and Snyder et
al. [23]). To be consistent with literature results, the data herein is given in the
units of the respective literature on the Goland Wing.

The CFD mesh for the Goland Wing was adapted from Snyder et al. [23].
Fig. 8 a) shows the surface mesh of the configuration with the cells on the
symmetry plane, while fig. 8 b) shows the DLM model of the configuration. The
DLM model consists of 200 boxes with a distribution of 20 boxes in spanwise
direction and 10 boxes in chordwise direction. The distributions are equally
spaced in both directions. The DLM model is shown in fig. 8 b). The boxes are
numbered from 1 to 200, again following the numbering approach given in [18].

The deformed CFD meshes for the modal deformations of the configuration
are generated using the undeformed CFD mesh and the structural data from
FEM-computations with MSC-NASTRAN. The structural model is correctly
representing the Goland+ configuration and is adapted from Snyder et al. [23].
As for the AGARD Wing, the modal deformations of the Goland+ Wing are
transferred to the CFD surface mesh using a Spline Interpolation (see ZAERO
[26]). Afterwards, the deformation of the CFD volume mesh of the farfield is
computed using TFI and spring analogy. The deformed meshes are generated
for rigid body pitch and plunge deformations, and for the first four elastic modes
of the configuration. These modes sufficiently represent the structural behavior
of the configuration for aeroelastic analyses and are suitable for the correction.

Again, it is validated that the interpolation of the disturbance forces from
the CFD method to the DLM boxes does not result in any unphysical force
distributions. In an assessment of the force distributions for both methods as
it was performed for the AGARD Wing, similar conclusions can be drawn. As
for the AGARD Wing, the distributions match qualitatively with high accuracy
and the CFD method predicts forces of higher magnitude at the trailing edge
and of lower magnitude at the leading edge than the DLM. Resulting from the
sharp leading edge, the deviations between both methods at the leading edge
boxes are smaller than observed for the AGARD Wing. As described above,
these effects lead to the expectation of diagonal entries below one (CW < 1) for
to the leading edge boxes and diagonal entries above one (CW > 1) for to the
trailing edge boxes.
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Table 2: Mode combi-
nations applied for the
correction method on
the Goland Wing

Case Mode Combination

Case 1 plunge and pitch mode; with 30% pitch
Case 2 1st bending, 1st torsional mode
Case 3 plunge mode, 1st bending, 1st torsional mode; with 30% pitch
Case 4 plunge mode, all elastic modes; with 30% pitch

Correction matrices were computed using the approach of sec. 3.2 for
the Mach numbers Ma∞ = 0.5, 0.6, 0.7, 0.8, the reduced frequencies kred =
0.0, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0 and combinations of modes. The
modal combinations are given in tab. 2. For the Cases 1, 3 and 4, a 30%-
portion of rigid body pitch is added to every mode other than the pitch mode.
Thus, it is ensured that every panel of every mode has a non-zero downwash
entry. Therefore, unreasonably high correction factors with changes of sign due
to downwash entries close to zero are prevented as observed for the AGARD
wing. Effects due to the clamping of the models at the symmetry plane can
thus be diminished. Since it is combined with a pitching motion, one can now
also use an in-plane mode for the correction. Case 2, namely the introduction
of the first two elastic modes, does not involve an addition of a pitching motion
to the elastic modes. Thus it is expected that the diagonals for the first boxes
are of large magnitude and contain changes of sign for Case 2. Fig. 9 shows the
correction matrices obtained for Case 3 of tab. 2 for different Mach numbers
and kred = 0.5 in their real and imaginary part. As expected, the matrices are
of diagonal dominant character for all Mach numbers with small off-diagonal
terms, even though several modes are induced. The behavior of the diagonal
entries regarding the leading edge and trailing edge force distribution of both
methods is as expected.

Fig. 10 compares the diagonal entries of the downwash correction matrices
for all cases of tab. 2 involving rigid body modes. Case 2 is not shown because
of its unreasonably high correction factors for the first boxes. Despite some
trailing edge peaks for Case 4, the diagonals of the presented cases match with
high accuracy and show the expected behavior. Although not presented here,
the matrices obtained with the force correction show similar behavior to the
downwash correction with a smaller drop in at the leading edge.

The flutter mechanism of the Goland+ Wing is a bending-torsion flutter
with a coalescence of the first bending and first torsional mode. Flutter fre-
quencies obtained with DLM and AER-SDEu are plotted in fig. 11. The flutter
mechanism is predicted correctly with results from the DLM and AER-SDEu.

Using the corrected GAFs and a p-k-method, corrected flutter results can
be computed. Fig. 11 and fig. 12 show the flutter speed and flutter frequency
for the downwash and the force correction for varying Mach number and an air
density of ρ = 0.00023771slugs/ft3. It can be observed that the results differ
in a very small range between the DLM and AER-SDEu. Both methods show
a similar behavior in their distributions and their numerical values, as well in
flutter frequency as in flutter speed. Despite the small deviations between the
DLM and AER-SDEu, the correction method still enhances the quality of the
DLM results towards the quality of the CFD results. Again, it is observed that
the introduction of pure rigid body modal data leads to an enhancement of
similar magnitude than the introduction of a full set of rigid body and elastic
modes. In the case of the Goland Wing, this holds true for the downwash and
the force correction.

Both correction approaches predict smaller flutter frequencies than the orig-
inal aerodynamic methods for all cases. Nevertheless, the downwash and the
force correction correctly capture the flutter mechanism for the various flight
conditions.
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(a) Ma∞ = 0.5, kred = 0.5, real part (b) Ma∞ = 0.5, kred = 0.5, imaginary part

(c) Ma∞ = 0.6, kred = 0.5, real part (d) Ma∞ = 0.6, kred = 0.5, imaginary part

(e) Ma∞ = 0.7, kred = 0.5, real part (f) Ma∞ = 0.7, kred = 0.5, imaginary part

(g) Ma∞ = 0.8, kred = 0.5, real part (h) Ma∞ = 0.8, kred = 0.5, imaginary part

Figure 9: Real and
imaginary parts of the
downwash correction
matrix for the Goland
Wing for Case 3 for
kred = 0.5 and different
Mach numbers
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Figure 10: Diagonal
entries of the down-
wash correction matrix
for Cases 1-4 for the
Goland+ Wing for
Ma∞ = 0.8, kred = 0.5
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0.00023771slugs/ft3 (=
0.1225kg/ft3)
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Figure 13: Distribution
of the real diagonal en-
tries of CW for Case
3 for the Goland Wing
over the reduced fre-
quency for Ma∞ =
0.954
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4.3 Interpolation of the Correction Matrices

The presented correction method promises to reduce the computational efforts
for an aeroelastic analysis compared to purely CFD-based methods during the
development phase of aircraft configurations. Further reduction of these compu-
tational costs can be achieved by means of interpolating the correction matrices
over the reduced frequency and the Mach number. For the Goland Wing in
downwash correction Case 3, fig. 13 and 14 present the distribution of the cor-
rection diagonals in their real part over the reduced frequency and the Mach
number, respectively. The resulting distributions of the correction diagonals
over the respective flight parameter are smooth and promise an appropriate in-
terpolation of the correction matrices. Although not presented in this paper,
the same effect is observed for the imaginary part of the correction diagonals.
Further studies with different interpolation methods have to be conducted.

5. Conclusions

A correction method to enhance the quality of DLM results by introducing small-
disturbance CFD aerodynamics was developed and successfully applied to the
AGARD Wing 445.6 (weak. 3) and the Goland+ Wing. The method employs
fully populated, diagonal dominant correction matrices to minimize the change
in the qualitative distribution of the DLM results and enables the correction to
use several modal data at the same time. The authors showed in a first step that
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the developed method is robust and enhances the DLM results even for the sole
injection of rigid body modes. This results prove the applicability of the method
during the development process of aircraft configurations. Further studies have
to be conducted using configurations of higher complexity, an additive correction
part and interpolation of the correction matrices.
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