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Abstract
The intensive design optimization of airframes has the effect of decreasing the struc-
tural stiffness, which can induce large deformations. Such changes can have a signif-
icant effect on the flight loads as well as the trimming configuration of the aircraft.
Iterative solutions to approach this problem have been proposed in literature, cou-
pling nonlinear structural solution methods with linear aerodynamics. In this paper, a
modified iterative methodology is proposed, which includes the downwash effect of the
aerodynamic twist into the solution sequence to improve the fidelity of the calculated
aerodynamic loads compared to the existing method. A case study is presented to in-
vestigate the differences in the wing loads of interest and trimming configuration when
the effect of geometric nonlinearities are included in the static aeroelastic analysis, as
the mass and stiffness is varied. Increases of 20%, 13% and 30% are observed in the
out of plane bending moment, out of plane shear force and torque for the most flexible
variant of the airframe considered. Additionally, significant differences are observed
in the corresponding trimming configuration, with changes of -12% and -8% in the
trimmed angle of attack and elevator deflection respectively.

1 Introduction

Minimizing aircraft weight to maximize its fuel efficiency is among the major
design objectives in new aircraft development programs [18]. The general trend
towards increasing the fuel efficiency of the aircraft has led to the shift towards
higher aspect ratio wings due to the significant effect on induced drag [4]. As
induced drag is a very significant part of total drag, reducing it can have sig-
nificant effects on fuel economy [1]. Both of these design trends have the effect
of increasing the deformation of the aircraft wing under loading. Weight min-
imization leads to reduced torsional and bending stiffness, which in turn lead
to increased wing deflections under load. Similarly increasing the aspect ratio
leads to a more slender wing, which increases the wing deflection. However,
the slenderness and reduced overall stiffness of high aspect ratio wings lead to
higher deflections, resulting in nonlinear behaviour. Such nonlinear effects can
have a significant effect on the aeroelastic behaviour of the aircraft, which has
been covered by a number of survey and review papers [44, 2].

An unintended consequence of such behavior is that it moves away from
what is expected from the typical linear structural model. As such, geometri-
cally nonlinear effects have to be taken into account during the design process
especially in the aeroelastic analysis of the aircraft, to better model its perfor-
mance under large deformations and as such, need to be included in any high
fidelity aeroelastic solution sequence [25].
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The most commonly used formulation for modeling the effects of geomet-
ric nonlinearities in structural analysis is the displacement based method (also
known as stiffness formulations method). Here, the nonlinear formulation for
twisted and curved beams, such as nonlinear composite beam theory by Bauchau
and Hong, is one such implementation [6, 7]. Since the independent variables are
the rotation and displacement, visualization and application of the constraints
is straight forward. However, the presence of higher order nonlinear terms in the
deformation field makes the displacement-based formulations computationally
expensive [40]. It should be noted that this methodology is the most commonly
used in commercial finite element codes.

Another formulation for modeling nonlinearities is the intrinsic formulation,
based on the foundation for the nonlinear exact equilibrium equations for thin
beams under deformation, given in Loves Treatise on the Mathematical The-
ory of Elasticity [28]. The original formulation considered bending and rotation
and extension of the beam, and was expanded upon by Reissner [34] to include
transverse force and deformation. The work done by Hegemier and Nair [20]
continued the work of Reissner, to formulate large deformations - small strain
theory for untwisted isotropic rods in extension, bending and twist. The formu-
lation consisted of equations of motion and kinematical formulae with unknowns
including stress resultants, generalized strains and velocities [23]. Hodges built
upon this approach by completing the geometrically exact intrinsic nonlinear
formulation for a curved and twisted moving anisotropic beams [22].In his for-
mulation, the governing equations did not contain displacement and rotation
variables, eliminating singularities associated with finite rotation variables [23].
This led to the formulation having a nonlinearity with a maximum order of two,
simplifying calculations and reducing computational cost [22, 44].In addition,
mixed variational formulations potentially can have higher solution accuracy and
robustness than displacement based formulations [48]. For structures that are
better represented as plates than beams, a formulation for moving anisotropic
plates is presented by Hodges, et.al. [24].

Strain based formulations represent the beam deformation with strain, twist,
and curvature as the independent degrees of freedom [16]. One of the advan-
tages of strain based formulations in a finite element simulation is to avoid
the shear locking phenomenon and accurate representation of rigid body modes
[36]. Forces and moments within the beam can be directly obtained from the
respective strains without additional differentiation of displacement variables,
while maintaining the same level of accuracy as obtained for the strains [49].
Su and Cesnik presented a strain based formulation that iteratively solve the
beam equilibrium and strain displacement equations, simplifying the solution
process, allowing for more flexibility in arbitrary loading and beam displacement
configurations [40].

The study of aeroelasticity of highly flexible aircraft configurations has been
investigated using a large range of methods. Modal methods were used to calcu-
late the loads on a High Altitude Long Endurance type aircraft by using selected
vibration and rigid body modes of the aircraft [42]. However, this analysis did
not consider the effects of large deformation geometrical nonlinearities. Their
effect on the flutter performance of aircraft was investigated by Patil et al., using
a nonlinear mixed variational formulation based on the work done by Hodges et.
al [24, 21]. Significant differences were found in flutter speed when compared to
existing linear methods [32]. Tang and Dowell used the nonlinear beam model
by Hodges and Dowell with the ONERA nonlinear stall model [29] to investigate
Limit Cycle Oscillations (LCO) and flutter effects [41]. Xie et. al conducted a
geometrically nonlinear analysis of a wing, using MSC Nastran to obtain the
natural frequency and mode shapes of the structure. The aeroelastic analy-
sis performed indicated that nonlinear effects play a significant role in highly
flexible wings [45, 46]. High fidelity geometrically nonlinear three-dimensional
finite element modes, coupled with computational fluid dynamics analysis were
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used by Garcia to investigate the effects of geometric nonlinearities on the twist
distribution along the wing, in static aeroelastic maneuvers. Nonlinear bending-
torsion coupling was shown to affect the twist, leading to control reversal in the
nonlinear case [17]. Strain based geometrically nonlinear models, coupled with
unsteady aerodynamics, and were used to investigate the flight dynamics of a
HALE type aircraft under various flight conditions, including ascent, descent,
and control surface inputs. The effects of nonlinearities were shown to be sig-
nificant during asymmetric maneuvers, and when the mass of the aircraft was
increased [38]. Further work has been performed in the field of nonlinear struc-
tural aeroelasticity, studying the effect nonlinearities have on different aircraft
configurations, such as joined-wing and flying-wing configurations [27, 33, 31].

In this paper, the theory behind the nonlinear iterative methodology will be
presented in the next section. Following that, the implementation of the theo-
retical methodology will be explained, along with the details of the case study,
and the beam parametrization being used. The results will be split into three
sections, the first being the improvements obtained when using the modified
nonlinear methodology on the relatively stiff baseline aircraft structure. The
second section will present the results of the study into the effect of nonlineari-
ties at higher wing root angles. The final section will investigate the importance
of having a nonlinear aeroelastic solution when the aircraft structural parame-
ters are modified, as often is done during a multidisciplinary optimization.

2 Theoretical Background

21 Nonlinear Structural Formulation

In linear structural analyses, equations of equilibrium are formulated with re-
spect to undeformed geometry as geometrical variations due to infinitesimal de-
formations are negligible [10]. However, when the deformations are unbounded,
they become large enough to develop considerable geometrical changes and the
equilibrium equations are formulated with respect to the deformed structure,
resulting in nonlinear governing equations of motion [37].

Commercial Finite Element code packages, such as MSC Nastran [26], often
use a Lagrangian method, where the Finite Element mesh follows the defor-
mation of the structure [8]. Within this, there are two formulations, the Total
Lagrangian Formulation (TLF) [30] and the Updated Lagrangian Formulation
(ULF) [5]. In the TLF, equilibrium is expressed relative to the original unde-
formed structure, while in the ULF, the reference state is the current [5].

We adopt in this paper the ULF nonlinear finite element approach [5].Here,
equations of motion are formulated with respect to the state of the structure at
time t+∆t, where ∆t is the time from the previous to the current load iteration.
Following the principle of virtual work, the methodology is formulated as follows.

The external virtual work, t+∆tW , of a deformed system at time t + ∆t
can be expressed in terms of the 2nd Piola-Kirchoff stress tensor, t+∆tSij , and

a variation in the Green-Lagrange strain tensor, t+∆tδεij , with respect to the
configuration at time t, as:∫

V

(
t+∆tSij

) (
t+∆tδεij

)
dV = t+∆tW (1)

where i, j ∈ {1, 2, 3}. The Green-Lagrange strain tensor and the 2nd Piola-
Kirchoff stress tensor are given by:

tεij = teij + tηij (2)

tSij = tCijrs
tεrs (3)

where teij and tηij are the linear and nonlinear strain components, respectively.
tCijrs are the components of the elasticity tensor, and r, s ∈ {1, 2, 3}. At the
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incremental time step t+ ∆t, the stress tensor is expressed as:

t+∆tSij = tSij + tτ ij (4)

where tτ ij are components of the Cauchy stress. Substituting Eqs. 2, 3 and 4
into Eqn. 1, the finite element formulation of the equation of motion can be
expressed as: [

tKL

linear

+ tKG

nonlinear

]
u = t+∆tR− tF (5)

where u is the vector of displacements between time t to t + ∆t, t+∆tR is the
finite element evaluation of Eqn. 1, and tF is the external work. The material
stiffness matrix is given by:

tKL =

∫
V

[
t
BL
]T

tC
[
t
BL
]
dV (6)

the nonlinear geometric stiffness matrix is given by:

tKG =

∫
V

[
t
BG
]T

tτττ
[
t
BG
]
dV (7)

and the external work is given by:

tF =

∫
V

[
t
BL
]T

tτ̂ττdV (8)

where BL and BG are the corresponding strain-displacement transformation
matrices, tτττ and tτ̂ττ are the matrix and vector of Cauchy stresses at time t,
respectively. The two stiffness matrices are assembled for the current state at
time t+∆t, and the nonlinear terms arise from the quadratic terms in Equation
2.

In a standard linear aeroelastic analysis, the aerodynamic pressure, f̂ , is
expressed as:

f̂ = qA−1ŵ (9)

where the downwash, ŵ, is given by:

ŵ = Dû+ ŵg (10)

The Aerodynamic Influence Coefficient (AIC) matrix is given by A, q is the dy-
namic pressure at the desired flight conditions, and D is the matrix relating the
displacements of the aerodynamic panels, û, to the downwash. For a standard
linear solution, the additional downwash vector ŵg is usually zero, unless the
wing being modeled has an initial camber or a twist distribution. The additional
downwash vector is used to include the nonlinear component of the wing twist
due to large deformation effects.

The total aerodynamic force on the structure , L̂, can then be expressed as:

L̂ = Sf̂ + P̂ (11)

where P̂ is a vector of rigid applied loads on the structure such as engine loads
and point loads, and S is a matrix relating the nodal pressures to nodal forces.

The force and displacement relationship for a static structural problem, in
general, can be expressed as:

F̂ = Kû (12)

where F̂ is the elastic force due to deformation û. The stiffness matrix, K, is
constant in the linear case, or a function of displacement in the geometrically
nonlinear case. When the aeroelastic system is at equilibrium, the entire system
can be expressed as:

Sf̂ + P̂ = Kû (13)
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Substituting in Eqns. 9 and 10 in Eqn. 13 results in a system of matrix
equations that can be solved to obtain the final deformed configuration of the
aircraft.

qSA−1 [Dû+ ŵg] + P̂ = Kû (14)

To include the effects of geometric nonlinearity, an iterative method is used to
update the vector of displacements, û, and the updated stiffness matrix, which
consists of a linear and geometrically nonlinear component, given by:

K = KL + KG (15)

The stiffness matrices are obtained using Eqns. 6 and 7, for the converged
nonlinear structural problem. Equation 14 can be rewritten as:

Q [Dû+ ŵg] + P̂ =
[
KL + KG

]
û (16)

where Q is a matrix relating the nodal downwash to nodal forces. Equation 16
is solved using an iterative process, which results in the following relationship,
where n is the iteration number.

nQ [nD nû+ nŵg] +
n
P̂ =

[
n+1

KL
]
n+1û︸ ︷︷ ︸

linear loads

+
[
n+1

KG
]
n+1û︸ ︷︷ ︸

nonlinear increment

(17)

Convergence criteria is determined by the difference in nodal displacement, uk,
with respect to the previous iteration, for all nodes along the wing, 1..k, given
by:

nσe > max
(
n+1uk − nuk

)
(18)

Equation 17 is incremented until convergence; i.e. nσe is small. For the case
study, the chosen convergence criteria is 0.1% difference in displacement between
iterations. The increase in loads due to the inclusion of geometric nonlinearities
can then be written as

∆e =

([n
KL +

n
KG
] n

ûNL

n
KLûL

− 1

)
× 100% (19)

where ûL and ûNL are the linear and nonlinear deformed configuration of the
aircraft.

22 Aerodynamic Formulation

The aerodynamic loads are calculated using Nastran SOL 144, which uses the
Doublet Lattice Method [3]. This method is based on linearized potential flow
theory, where a line of potential doublets of unknown strength lie on the quarter-
chord of each panel. Given n ‘boxes’, with a constant force per unit length of
the quarter-chord line, f , the strength of doublet line segment j is given by

fj
4πρ

∫
ljds (20)

where lj is the length of the doublet line, ds is an increment along the line, and
ρ is the density of the air. The total downwash at any point on the aerodynamic
surface, xi, si, can then be written as the sum of all the downwashes due to the
n doublets on the surface as follows

w̄(xi, si) =

n∑
=1

(
fj

4πρ
U2

)∫
K̂ds (21)

where U is the freestream velocity, and K̂ is the kernel function for a nonplanar
surface [43]. When Equation 21 is applied on all the downwash points, the force
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per unit length along the quarter-chords of the boxes can be determined, and
thus, the average pressure, P̄i, on each box can be written as

P̄i =
fi

∆xjcosλj
(22)

where ∆xj is the average chord of the jth box, and λj is the sweep angle of the
doublet line on the box. Given jth index of doublet lines and ith index of the
downwash points, Equation 21 can be re-written as

w̄i =

n∑
j=1

Dijpj (23)

where Dij are the elements of a matrix relating the aerodynamic pressures to
the downwash at each point, given as follows

Dij =
π

8
∆xjcosλj

∫
K̂ds (24)

Equation 10 represents the downwash acting on an aerodynamic panel. How-
ever, trimming the aircraft into a steady state condition often requires the use
of aerodynamic degrees of freedom, such as angle of attack, rotation rates, and
control surface deflections, to modify the net forces and moments acting on the
structure, which can be incorporated into the expression for the downwash as
follows:

ŵ = Dû+ Dσûσ + ŵg (25)

where Dσ is a matrix relating the aerodynamic degrees of freedom, ûσ, to the
downwash.
All prior equations assume that the aerodynamic forces are applied directly to
the structural nodes. However, this is not always the case, as the aerodynamic
loads are applied at the quarter-chord point of each aerodynamic box element,
which may be much larger in number than the actual structural elements. The
forces need to be coupled to the structural degrees of freedom of the airframe,
which is achieved by the use of a linear beam spline. G is an interpolation matrix
relates the structural deflections û to the aerodynamic grid point deflections,
ûk.

ûk = Gû (26)

Imposing the condition that the virtual work performed by both deflections
is identical, an expression for an arbitrary force transformation between the
aerodynamic and structural nodes can be obtained:

F̂g = GT F̂k (27)

where F̂k is a vector of aerodynamic loads, and F̂k are the corresponding loads
on the structural nodes. The system of equations representing a linear static
aeroelastic problem can then be expressed as follows:[

KL −QD
]
û+ M¨̂u = QσDσûσ + P̂ + Qŵg (28)

This is similar to Equation 16, where Qσ relates the downwash due to a unit
displacement of aerodynamic degrees of freedom (control surface deflections,
incidence angles, rotation rates) to the aerodynamic forces, M is the structural
mass matrix, and ¨̂u is a vector of rigid body accelerations. Given the free rigid
body degrees of freedom, necessary constraints to other aerodynamic degrees
of freedom, as well as the definition of the control surfaces, Equation 28 is
partitioned into restrained and free degrees of freedom, and is solved to obtain
the trimmed flight condition of the aircraft [35].
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Initial FE mesh

Run SOL144
to obtain
aero loads

Run SOL106
on unde-

formed mesh

Check for
convergence

Stop iterating

Update displacements
and local wing twist

on aerodynamic mesh

Converged

Not converged

Figure 1: Flowchart
depicting the Nastran
Iterative Method

3 Methodology

This section outlines the developed methodology to couple linear aerodynamics
to a nonlinear structural methodology to create an iterative solution which
incorporates geometrically nonlinear effects into static aeroelasticity. In this
paper, MSC Nastran is used for this purpose.

31 Modified Iterative Method

Equation 17 is implemented using the linear aeroelasticity and nonlinear struc-
tural analysis codes of MSC Nastran. In the flexible aeroelastic trim, the Dou-
blet Lattice Method is used to calculate the aerodynamic loads on the aircraft,
and update the deformed shape of the lifting surfaces based on linear structural
mechanics. However, there is no nonlinear aeroelastic module present by de-
fault in Nastran. As such, a modified method, based on the iterative method
proposed by [25], is used to determine the effects of large displacement non-
linearities on the aircraft loads. A flowchart of the overall process used in the
iterative loop is shown in Figure 1.

This method uses linear panel method aerodynamics to calculate the loads
on the structure, which are applied on the undeformed structure. A displace-
ment based geometrically nonlinear method is used to calculate the nonlinear
deformation of the structure, including follower force effects, and the new dis-
placements are used to update the structural and aerodynamic mesh used for
the aerodynamic loads calculation to obtain a new set of loads. The process
is repeated until the structure converges at a deformed shape configuration.
The loads acting on the aircraft due to its new deformed configuration can be
obtained.

The aerodynamic implementation uses the doublet lattice method, which di-
vides the surface into a number of panels, parallel to the free stream velocity [3].
However, the DLM implementation in Nastran places the flow direction in the
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Figure 2: Reduction
from Global Finite El-
ement Model to Stick
Model for a generic twin
engine aircraft

Model reduction

Beam parametrization

2a

2b

positive x-direction, which has to be parallel to the x-axis of every aerodynamic
element [35]. In addition, the resultant aerodynamic forces are applied in the
coordinate system of the undeformed aerodynamic panel, which can lead to the
aerodynamic forces having no inboard component, even under large deflections.

As the structure is assumed to be flexible, the effects of twisting along the
wing on the generated lift cannot be ignored. As such, the first limitation can
be resolved by implementing a downwash angle of attack on the aerodynamic
panels corresponding to the local angle of attack along the wing. The second
limitation of having the aerodynamic loads applied normal to the structure can
be resolved by updating the orientation of the aerodynamic panels to match the
deformation of the wing. This allows the lift force to act as a follower force, as
it follows the deformation of the wing.

32 Case Study

A Bombardier Aircraft platform is used for the purposes of this paper. As a
detailed 3D Global Finite Element Model (GFEM) of an aircraft would be very
computationally expensive in an iterative aeroelastic analysis, a stick model of
the aircraft is used, as shown in Fig. 2.
A stick model is a reduced order model represented by a series of beam elements
extending along the aircraft elastic axis that resembles the overall structural be-
havior of its 3D GFEM counterpart. There are several stick model development
methodologies available in the literature [15, 9, 39, 12, 19, 11]. A common
stick model development method adopted by the aerospace industry involves
the extraction of stick beam equivalent stiffness properties using unitary load-
ing method [39, 12]. This methodology is employed in this paper for the 3D
GFEM model order reduction.
Fig. 3 shows a schematic drawing that illustrates the stiffness extraction process
of the stick model of a single bay of the 3D GFEM of aircraft wingbox. A wing
bay is the segment of the 3D GFEM extending between two consecutive wing
stations that is replaced with a single Timoshenko beam element within the
stick model reduced order model. Here, the shear centers of the cross-sections
at the two ends of a single wing bay are located and a local reference coordinate
system is identified at these locations. The shear centre at each subdivision is
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Figure 3: Schematic
drawing showing GFEM
reduction process to a
Stick Model

located by finding the chord-wise point of minimum torsion when a shear load
is applied. The defined coordinate system is assumed as a principal coordinate
system with its torsional axis extending along the line connecting the predefined
shear centers at the ends of the wing bay while the first principal bending axis is
assumed along the section airfoil chord line, as shown in Fig. 3. A cantilevered
boundary condition is assumed with the inboard end, 1, is fixed. Six load cases
involving unit forces and moments are applied at the shear center of the free
end, 2, and the stiffness properties for the beam element representing the wing
bay are computed as:

Aj1→j2 =
Lj1→j2
E|δj1→j2|x

(29)

where Aj1→j2 is the equivalent cross sectional area, Lj1→j2 is the bay length,
|δj1→j2|x is the axial elongation due to the applied unit load along x-axis and
E is the material Youngs modulus.
Similarly, the shear factors along the y - and the z - directions, Ky and Kz,
respectively, are computed as:

(Ky)j1→j2 =
Lj1→j2

GAj1→j2|δj1→j2|y
(30)

(Kz)j1→j2 =
Lj1→j2

GAj1→j2|δj1→j2| z
(31)

where |δj1→j2|y and |δj1→j2|z denote, respectively, the translational deformation
in y- and z- directions due to applied unit forces and G is the material shear
modulus.
Moments of inertia of the stick model beam element are computed using the
rotational deformations corresponding to the application of unit moments in
same manner as described before. The equivalent bending moments of inertia
(Iy)j1→j2 and (Iz)j1→j2, in the y- and z- directions respectively, as well as

the equivalent torsional moment of inertia, (Jx)j1→j2 in the x-direction, are
computed as:

(Iy)j1→j2 =
Lj1→j2
E|θj1→j2|y

(32)

(Iz)j1→j2 =
Lj1→j2
E|θj1→j2| z

(33)

(Jx)j1→j2 =
Lj1→j2
G|θj1→j2|x

(34)

Where |θj1→j2|x, |θj1→j2|y, and |θj1→j2|z are the angular deformation along x-,
y- and z- directions, respectively.
It should be noted that the standard practice in the aerospace industry for
aeroelasticity analysis involves the use of lumped mass idealization of the 3D
GFEM [14]. The equivalent lumped mass [12] for each aircraft bay can be easily
calculated from the aircraft CAD model.
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Figure 4: Critical wing
loads from wing root to
tip normalized with re-
spect to the maximum
load from the GFEM
model. a) out of plane
bending moment, b) out
of plane shear force,
and c) torsional moment
along wing elastic axis.
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Table 1: Flight condi-
tions for steady flight

Parameter V alue
Mach Number 0.6
Altitude (ft) 29500

Dynamic Pressure (psi) 1.1272
True Airspeed (ft/s) 598.20

The developed stick model was validated by comparing the loads along the
wingspan for the aircraft in steady flight using the 3D GFEM model and the re-
duced stick model, also referred to as the EIGJ stick. The out of plane bending,
out of plane shear, and torsional loads are compared along the full wing-span.
As can be observed from Figs. 3, there is a very good agreement between the
two models, justifying our use of the reduced stick model.

The aerodynamic model of the aircraft requires the inclusion of control sur-
faces to trim the aircraft at various flight conditions. The control surfaces
defined are two ailerons, an elevator, and a rudder. All analyses are run in the
steady level flight condition given in Table 1, and the model is free in the plunge
and pitch degrees of freedom, and the pitch rate is constrained to zero. The
aerodynamic solver, SOL144, poses the problem of trimming the aircraft as a
system of equations

As the goal of this study is to document the differences in loads when the
aircraft structure is modified, a methodology is needed to create stiffness and
mass variations to the structure. In this paper, only the wing elements are
modified, leaving the fuselage, horizontal and vertical tails unmodified.

Since the analysis is being performed on an actual aircraft model, the mass
and stiffness data points from the sizing optimization of the aircraft, which was
provided to us by Bombardier Aerospace, are used to create a relationship be-
tween the structural parameters and the resultant mass of each beam element.
Following this, each beam element is assumed to have an equivalent rectangular
cross-section. The cross-sectional dimensions of the equivalent beam element,
namely the width and height, are then parametrized using the given relation-
ships for the beam properties [47], which are used to parametrize the beam
properties as functions of their geometry. The relationship between geometry
and beam properties are them given by:

I1 =
4ab3

3
(35)

I2 =
4a3b

3
(36)

J = ab3
[

16

3
− 3.36

b

a

(
1− b4

12a4

)]
, a ≥ b (37)

Equations 35 to 37 allow the beam dimensions to be varied, to create a set
of flexibility cases from the baseline structure. The structural mass is obtained
using a linear relationship obtained from the design data of the aircraft, which
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Figure 5: Variation in
the in plane stiffness,
torsional stiffness, and
structural mass of the
wing as a function of the
out of plane stiffness.

consisted of hundreds of design iterations, where the mass is dependent on the
beam dimensional and structural properties. The stiffness data generated can
be seen in Fig. 5, where Î1 and Î2, are defined as the ratio of the in and out
of plane second moment of area, Ĵ is defined as the ratio of polar moment of
area, and M̂ is defined as the ratio of the structural weight, with respect to
the baseline structural parameters. As the individual beam stiffness along
the wing stick model varies, the span-wise distribution of the stiffness is kept
constant, and the stiffness parameters of every element along the wings are
varied by a scaling factor determined with respect to a single element at the
root. This ensures that the only difference in stiffness across all the generated
model data is the relative stiffness determined by the aforementioned scaling
factor. A program is written in MATLAB to take the reference aircraft and
parametrize each of the wing elements by solving Equations 35 to 37 to solve
for the equivalent rectangular cross-section. Following this, the dimensions of
the equivalent beam cross-section, namely the width and height, are varied to
create a new flexible model of the aircraft. The equivalent beam width and
height are varied such that the range of out of plane stiffness, I1, is changed
from 30% to 100% of the reference beam stiffness, and the in plane stiffness, I2,
remains unchanged. The torsional stiffness, J , is calculated using Eqn. 37. The
parametrized model properties are then written into the Nastran beam format,
and the Modified Iterative Method is used to determine the loads.

As such, for the purposes of this paper, the out of plane stiffness of the wing
is varied from the baseline of 100%, to 30% of the baseline, representing a 21%
reduction in weight, M̂ . The lower end of the defined range, 30%, was selected
by observing the stability of the iterative system. For more flexible variants of
the aircraft, it was observed that the aircraft was far too flexible to support itself
in steady flight resulting in a high occurence of numerical convergence issues.

33 Limitiations

While the proposed method has significant advantages over the linear Nastran
SOL144, it has some limitations which need to be considered when interpreting
the results from the method. The first limitation is related to the aerodynamics
loads calculation. As the method used to calculate the aerodynamic loads on the
aircraft uses Nastran SOL144, the aerodynamics are calculated using linearized
potential theory. [35]. As a result, the loads obtained when local wing twist
angles are close to stall may not be representative of the physical loads exerted
on the aircraft structure. The second limitation of the proposed method, is that
it is only applicable to static aeroelastic loads calculation. Despite aeroelasticity
inherently being a dynamic process, inertial effects are ignored as the process can
be deemed quasi-static, due to the slow moving nature of the flight conditions
studied.
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Figure 6: Undeformed
and deformed (scaled x
3) structural mesh
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4 Results

41 Steady flight conditions

In this section, critical wing loads from the nonlinear methodology, with and
without the effect of wing twist, are presented for the relatively stiff baseline
aircraft stick model. Results for out of plane bending, out of plane shear, and
wing torsional loads along the wing span are presented. Figure 6 depicts the
wing displacements under steady flight conditions for the linear and modified
nonlinear methods, where η is the normalized position along the wing-span. The
displacements have been scaled by a factor of three to help visualize them more
clearly.

The results for the out of plane bending moment, shear, and torsion along
the wing are presented below in Fig. 9. The loads from the nonlinear loop
without twist effects, shown in Fig. 9(a) and 9(b), are significantly affected by
the inclusion of geometrically nonlinear effects. This results in the root out of
plane bending moment and shear forces being 12% and 7% higher than the loads
calculated using linear aeroelastic methods, respectively. The inclusion of wing
twisting effects into the loads predicted by the nonlinear methodology brings the
difference in out of plane shear and bending moment to less than 2% along the
entire wingspan. The root torque, shown in Fig. 9(c), is 2% and 3% higher than
the loads obtained from the linear method. The change in loads between the
two nonlinear methodologies is attributed to the change in the lift distribution
across the wingspan as the effects of downwash are taken into consideration. As
a way to validate the modified nonlinear methodology, a nonlinear aeroelastic
analysis was run using ASWING [13]. ASWING, developed by Mark Drela at

Figure 8: Comparison
of a) out of plane bend-
ing moment, and b)
out of plane shear, be-
tween the proposed non-
linear methodology and
ASWING [13].
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Figure 9: Critical wing
loads from wing root
to tip normalized with
respect to the maxi-
mum corresponding lin-
ear load. a) out of plane
bending moment, b) out
of plane shear force,
and c) torsional moment
along wing elastic axis.

the Massachusetts Institute of Technology, Massachusetts, USA, is a program
for the prediction of static and quasi-static loads and deformations of aircraft
with flexible surfaces and fuselage beams where fully nonlinear Bernoulli-Euler
beam representation is used for all the surface and airframe structures. The
baseline airframe was converted to the ASWING format, and the analysis was
run under the same flight conditions provided in Table 1. The results, shown in
Figure 8, demonstrate a good agreement between the two methods, benchmark-
ing the methodology developed in this paper. Overall, the modified nonlinear
methodology results are in agreement with the linear loads for the baseline air-
craft stick, which is considered to be relatively stiff. The difference in the loads
between the nonlinear methodologies are significant as the out of plane loads
calculated by the modified nonlinear methodology are lower than the unmodi-
fied loop. This is a result of the change in angle of attack along the outer edges
of the wingspan, as shown in Fig. 7, which is not considered in the original
modified loop presented. As such, the rest of the results will be presented using
the modified nonlinear methodology which includes twist effects.

42 Variation of root angle of attack

The following results are presented as the root angle of attack, α0, for the aircraft
wing is increased linearly from 0 to 10 degrees. The angle of attack is changed
by using a Direct Matrix Input to change the downwash angle at each of the
aerodynamic panels of the wing to implement the change in α0. The effect of
geometric nonlinearity on the out of plane loads can be seen to increase with
the angle of attack. Figure 10 shows the variation in the critical wing loads,
namely the out of plane bending, out of plane shear, and torsion at the wing
root, as the angle of attack increases.

With a root angle of attack of 0 degrees, the out of plane loads along the
wing are very close to values obtained from the linear method. This is due to
the fact that the aircraft is relatively stiff. As α0 increases, the loads obtained
from both solutions increase, but the loads from the nonlinear solution do not
increase as much as the linear loads, indicating that the inclusion of the effect of
geometric nonlinearities has the effect of underestimating the loads at high root
angles of attack. This is due to the fact that the lift produced by the outboard
section of the wing reduces with the increased deformation, resulting in reduced
out of plane moment and shear force.

43 Parametric variation of equivalent beam dimensions

43.1 Effect on static aeroelastic loads

As shown in [25], the stiffness of the overall structure has a significant effect on
the difference in the loads obtained through classical linear methods as well as
nonlinear methods. However, the effect of changes to the individual structural
parameters would give a more in depth look into the loads differences due to
nonlinearities. The results presented in this section investigate the effects of
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Figure 10: Critical
wing root loads, nor-
malized with respect
to the maximum cor-
responding linear load,
with increasing root
angle of attack, α0, for
the modified nonlinear
loop. a) out of plane
bending moment, b)
out of plane shear force,
and c) torsional mo-
ment along wing elastic
axis.
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Figure 11: Increase in
nonlinear a) out of plane
bending moment, b) out
of plane shear force,
and c) torsional moment
at the wing root, ∆e,
compared to the cor-
responding linear load,
with parametric varia-
tions of in and out of
plane stiffness, Î1 and Î2
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varying the individual beam parameters on the significance of the nonlinearities
using the modified nonlinear loop.

The most significant factor observed to affect the nonlinearities is the varia-
tion of the flexural stiffness in the out of plane direction. This can be seen very
clearly in Fig. 11, where the increase in loads due to the inclusion of nonlinear
effects can be seen to be only slightly affected by changes in the in plane stiff-
ness of the wing. As such, the following analyses focus only on the variation of
the out of plane stiffness, Î1, keeping Î2 at the original reference value of 100%.
Figure 12 shows the percentage increase in the root loads, when nonlinearities
are considered, ∆e, over the linear solution for the out of plane bending mo-
ment, shear force, and root twisting moment. The percentage increase in wing
tip deflection due to the nonlinear solver, ∆utip

, is shown in Figure 13.
As shown in Fig. 12, the out of plane bending moment and shear force at the

wing root are highly dependent on the out of plane flexural stiffness, resulting
in up to a 19% increase in the out of plane bending moment and a 12% increase
in the out of plane shear force when the flexural stiffnesses are both reduced to
30% of the original value, while the torsional moment is 6% higher.

The acceptable margin of error for this specific aircraft platform are 1%, 10%,
6% and 10%, for the out of plane bending moment, out of plane shear force,

Figure 12: Nonlinear
increase in root loads,
∆e, with variations of
the out of plane stiff-
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increase in wing tip ver-
tical deflection, ∆utip

,
with variations of the
out of plane stiffness.
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Î1 = 70%
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Î1 = 100%

(c)

Figure 14: Variation of
the increment in loads
along the wingspan due
to nonlinearity. Critical
wing loads plotted here
are a) out of plane bend-
ing moment, b) out of
plane shear force, and c)
torsional moment along
wing elastic axis.

wing torsional moment, and wingtip deflection respectively. For this airframe,
it is observed that the out of plane bending moment exceeds the acceptable load
discrepancy criteria when the relative out of plane stiffness, Î1, is lower than
70% of the reference airframe. The threshold at which our allowable margin for
the out of plane shear at the root is exceeded, is much lower, with Î1 around
35%, while the wing tip deformation threshold is crossed for Î1 values below
50%.

Figure 14 shows the wing loads normalized with respect to the root load for
the baseline stiffness case, Î1 = 100%. It is observed that the loads along the
wingspan, vary uniformly when the out of plane flexural stiffness Î1 is varied
without changing Î2 or Ĵ , with the exception of the out of plane shear and
torsional moment at the aileron. This is as a result of the loads exerted by the
aileron becoming proportionally more significant to the wing loads as the overall
magnitude of the loads decrease with reducing mass. This can be seen in Figure
17(c), which shows the aileron deflection, δail, from both linear and nonlinear
methodologies. Figures 15 and 16 show the nonlinear and linear critical wing
loads along the wing span respectively. The loads are normalized with respect
to the linear wing root loads for the 100% stiffness baseline. It can be seen that
as the structure of the aircraft is made more flexible, the magnitude of the loads
reduces due to the corresponding reduction in mass. However, this reduction is
less apparent in the nonlinear case due to the effects of large deformations.
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Î1 = 60%
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Figure 15: Variation
of critical loads along
the wing span obtained
from the nonlinear it-
erative method, as the
stiffness of the wing is
reduced from 100% to
30% of the original val-
ues.

ASDJournal (2018) Vol. 6, No. 1, pp. 1–20



∣∣∣ 16

Figure 16: Variation
of critical loads along
the wing span obtained
from the linear SOL144,
as the stiffness of the
wing is reduced from
100% to 30% of the orig-
inal values.
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Î1 = 60%
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Figure 17: Variation of
a) Angle of attack, α,
b) elevator deflection,
δelev, and, c) Aileron de-
flection, δail, with varia-
tions in the out of plane
stiffness, Î1.
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43.2 Effect on aircraft trimmed configuration

The change in the deformed structure has a significant effect on the trimming
configuration of the aircraft, which can be observed in the change in trimmed
angle of attack and elevator deflection. Figures 17 plots the trends of the air-
craft trim variables as the flexibility increases. The angle of attack, elevator
deflection, and aileron deflection, are shown for both the linear and nonlinear
methods used. Of interest to note are the angle of attack and elevator deflection
plots, shown in Figures 17(a), 17(b), which show a local change in behaviour
at stiffnesses below 50% of the original structure. The aileron deflection re-
mains relatively constant when the nonlinear methodology is used. However,
the aileron deflection does induce significant torsional and shear loads in the
nonlinear method, as discussed in the previous section, and shown in Figure 14.

5 Conclusions

In this paper, the use of a geometrically nonlinear methodology to calculate
static aeroelastic loads results in a significant increase in the out of plane loads
for a very flexible airframe. The difference in loads for the stiff baseline aircraft
are reasonably close and within 2% of the linear values, but the differences
increase as the flexibility of the structure increases. The main driving factor
causing the differences is the change in deformed aircraft configuration due to
the effects of geometric nonlinearities. The inclusion of wing twist effects into the
nonlinear solution can be seen to increase the fidelity of the loads calculated by
the nonlinear methodology, and also has a significant impact on the out of plane
bending and shear forces experienced at the wing root. Torsional moment was
found to be up to 3% higher at the root when nonlinear effects were considered.
The variation between the loads from a nonlinear loop and a linear aeroelastic
methodology as the root angle of attack was studied. The effects of geometric
nonlinearities were found to have a significant impact on the calculation of the
critical wing root loads, namely the out of plane bending moment, out of plane
shear, and torsional moment. The linear method over predicts the out of plane
bending, out of plane shear forces and torsional moment at the root at higher
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root angles of attack.
The variation of the structural flexibility parameters has a significant effect

on both the resultant loads as well as the final trimmed configuration, however,
the primary driving factor here is the out of plane flexural stiffness. A 70%
reduction in both the in and out of plane flexural stiffness resulted in the linear
solution under predicting the out of plane moment, shear, and wing torque by
19%, 12% and 6% respectively, while the wingtip deflection was 17% higher. It
was also determined, for this specific aircraft platform, that the threshold for
considering nonlinearities occurs at a 30% reduction in out of plane bending
stiffness which corresponds to a 1% difference in loads obtained from linear and
nonlinear methodologies. The trimmed configuration of the aircraft was found
to have significant changes, especially in the trimmed angle of attack, due to
changes in the lift distribution along the wing. Given the modern approach
towards more flexible aircraft, it may be possible to use the results from this
paper to determine the feasibility of using either a linear or nonlinear aeroelastic
methodology for the calculation of aircraft loads when rapid design optimization
changes may change the structure and bring about significant geometrically
nonlinear effects.
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