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Abstract
This work considers the aeroservoelastic optimization of a highly flexible transport
aircraft wingbox with several control surfaces distributed along the trailing edge. The
steady deflections of the control surfaces are designed to alleviate static maneuver
loads, while the unsteady deflections are designed to alleviate stochastic continuous
gust disturbances. Spatially-detailed unsteady stochastic stress and panel buckling
constraints are formulated via modal acceleration, and by methods based on the prox-
imity of the structural design to the equal-probability failure hypersurface spanned by
the stochastic gust loads. For the case considered here, it is found that the inclusion of
such gust constraints during optimization presents a sizable structural mass increase.
In some cases, this mass can be completely recovered with controlled gust load alle-
viation via linear quadratic controllers driven by multiple flaps distributed along the
trailing edge.

Nomenclature

A . . . . . . . . . . . . . . . . dynamic aeroelastic coefficients

As,Bs,Fs . . . . . . . . static aeroelastic coefficients

Bθ,Bδ,Bw . . . . . . . dynamic aeroelastic input matrices

Bσe
,BNe

. . . . . . . . . strain displacement matrices

Cp . . . . . . . . . . . . . . . aerodynamic pressures

Cσe
. . . . . . . . . . . . . . stress covariance matrix

F ,f . . . . . . . . . . . . . . quadratic failure surface terms

ge . . . . . . . . . . . . . . . . gust constraint

H . . . . . . . . . . . . . . . . mode acceleration matrix

J . . . . . . . . . . . . . . . . . LQ cost function

Kδ . . . . . . . . . . . . . . . FCS proportional control

Kθ . . . . . . . . . . . . . . . LQ feedback matrix

KS . . . . . . . . . . . . . . . aggregation parameter

L . . . . . . . . . . . . . . . . Kalman gain

M , C, K, A . . . . mass, damping, stiffness, and aerodynamic matrices

NL . . . . . . . . . . . . . . . number of load cases

Nσ, Nµ . . . . . . . . . . . number of stress and buckling aggregation parameters

Nx, Nxy . . . . . . . . . . in-plane tractions

q . . . . . . . . . . . . . . . . . design variables

Qx,Rθ . . . . . . . . . . . LQ weighting matrices

se, se1 , seg . . . . . . . . total stress, cruise stress, gust stress
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t, ts, hs . . . . . . . . . . . patch thickness, stiffener thickness, stiffener height

u . . . . . . . . . . . . . . . . . structural solution vector

UEAS , U
∗, Uσ . . . . . equivalent air speed, critical flutter speed, design gust speed

w,wg . . . . . . . . . . . . . white noise input, gust speed

x . . . . . . . . . . . . . . . . . dynamic aeroelastic solution vector

xs . . . . . . . . . . . . . . . . static aeroelastic solution vector

X . . . . . . . . . . . . . . . . aeroservoelastic covariance matrix

y,v . . . . . . . . . . . . . . sensor output, sensor noise

α, δ . . . . . . . . . . . . . . . static trim angles

Θ,θ . . . . . . . . . . . . . . commanded and actual control surface rotation vectors

σx, σy, σxy . . . . . . . . plane stresses

σY . . . . . . . . . . . . . . . yield stress

γ, ω . . . . . . . . . . . . . . dynamic aeroelastic eigenvalue, real and imaginary part

φ . . . . . . . . . . . . . . . . . mode shapes

η . . . . . . . . . . . . . . . . . modal amplitudes

1. Introduction

Modern aeroservoelastic optimization typically considers the simultaneous de-
sign of multiple subsystems, including the wing jig shape details, the structural
wingbox sizing, control surface scheduling, and control law architecture: see for
example Refs. [1] - [5], and a broader summary in Ref. [6]. In these papers,
articulated control surfaces are used for active cruise drag reduction, maneuver
load alleviation (MLA), gust load alleviation (GLA), and active flutter suppres-
sion (AFS), among other vehicle-level flight control system (FCS) uses. The
way in which this control system should be optimized is tightly coupled to the
design decisions made for the structural sizing, jig shape details, etc.

One focus of this work is on the design interplay between the different load
cases, particularly between maneuver loads and gust loads, handled either pas-
sively or actively. In this work, MLA indicates a situation where the control
surfaces optimally distribute the load over the wing while maintaining trim con-
ditions, whereas GLA is a true alleviation in the sense that gust perturbations
to a trimmed state are minimized via oscillatory control surface motions.

It should be expected that the inclusion of MLA in the design process will
allow an optimizer to feasibly reduce structural weight, since the loads borne by
the wingbox will be reduced. This in turn will amplify the role of flutter and
gust constraints during the optimization (i.e., make the constraints harder to
satisfy), which can in turn be attenuated through the use of AFS and/or GLA.
A second focus of this work is the implementation of stochastic (continuous)
stress- and buckling-based gust constraints (where linear buckling is considered
at the stiffened panel level) for spatially-detailed structural wingbox design, as
well as control law design, for a generic transport configuration.

It is well known [6, 7] that continuous gust constraints are efficiently de-
veloped using state-space methods driven by a white noise input sent through
a forming filter. A Lyapunov equation is then solved for the covariance ma-
trix of each aeroservoelastic state. If the design metrics of interest are linear
functions of the state vector (such as structural deflections, accelerations, bend-
ing moments, etc.), then the covariances and root-mean-squared values of these
metrics are rapidly computed for constraint formulation, as done in Refs. [8],
[9], and [10], to name a few. The analytical sensitivities of these terms, typically
required for gradient-based optimization, may also be computed [7, 11, 5].

For a large-scale structurally-detailed wingbox with complex failure mech-
anisms, however, accelerations and bending moments may be too simplistic to
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Figure 1: Wingbox and
control surfaces of the
high aspect ratio CRM.

serve as design constraints. Detailed stress constraints, typically the super-
position of 1g cruise stresses and the stochastic gust stresses, introduce two
numerical challenges. First, the aeroservoelastic state-space equations must be
formulated in a reduced modal space, in order for the computational cost of the
Lyapunov solver to remain tractable. Stresses (and their sensitivities) are known
[12, 13] to be very difficult to accurately extract from modal approximations, as
they converge slowly with mode number. Secondly, stress-based (or buckling-
based) failure indices of interest, such as the von Mises stress, are nonlinear
quadratic functions of the aerservoelastic state, complicating the formulation of
a stochastic failure criterion from the covariance matrix [14, 15].

These two complications have been addressed and solved in Refs [16] and
[17], respectively, but neither has been entirely proven out in the context of a
complete and realistic aeroservoelastic design exercise, which is the goal of the
current work. This will be done for the Common Research Model, a highly
flexible transport configuration with several electrohydraulic control surfaces
distributed along the trailing edge.

The optimization process, driven by adjoint derivatives, seeks to minimize
structural wingbox mass via several different types of aeroservoelastic design
variables. Detailed structural sizing variables govern the stiffness and inertial
properties of the wingbox. Steady control surface deflections are optimized to
modulate static maneuver loads, while unsteady control surface deflections (op-
timized via control law parameters) alleviate the dynamic gust response. Con-
straints are placed upon the static stress and buckling margins during maneuver
loads, as well as the corresponding gust stress and buckling margins (computed
with the strategies discussed above). The aeroelastic designs are obviously re-
quired to be free of flutter, but AFS is not included in this work due to the
higher level of risk associated with this technology [18]. The effects of various
constraints and design variables are sequentially investigated in this work, in
order to provide a clear understanding of the effects of each upon the optimal
aeroservoelastic performance.

2. Transport Configuration Test Case

All of the work in this paper is conducted on a conceptual high aspect ratio
Common Research Model (CRM) jig shape shown in Fig. 1. This configuration,
described extensively in Ref. [19], has an aspect ratio of 13.5, a wing span
of 72 m, a mean aerodynamic chord of 6.3 m, a taper ratio of 0.25, a sweep
angle of 35◦, and a cruise Mach number of 0.85. The topology of the wingbox in
Fig. 1 consists of 58 ribs, leading and trailing spars, and upper and lower surface
skins. All shell members are outfitted with T-shaped stiffeners, where the flange
is bonded to the shell members. The stiffeners are not modeled explicitly, but
instead smeared into the shell stiffness properties [20]. An aluminum finite
element model of this wingbox is composed of 21,300 triangular finite elements.
Non-modeled secondary weight (of fasteners, etc.) is captured by increasing the
structural density by a factor of 1.25. Nodes along the wing centerline are given
a symmetric boundary condition; nodes along the wing root are given a pinned
boundary condition, in order to approximate the wing/fuselage intersection.

Twenty articulated control surfaces are distributed along the trailing edge
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Figure 2: Aerodynamic
paneling (left) and non-
structural lumped mass
distribution (right).

of the wing from root to tip, also seen in Fig. 1. This is a departure from
conventional aircraft layouts, whose trailing edge is populated with a sparser set
of flaps, ailerons, and spoilers. This common layout may be considered a subset
of the layout used here, though the current work also ignores any practical
difficulties and limitations associated with simultaneous control of all twenty
actuators. In particular, the use of several articulated control surfaces increases
the probability of individual control failures, though may also be exploited to
mitigate the shared risk.

For this work, the mass of each electrohydraulic actuator used to drive each
control surface is set based on an initial estimate of the hinge moments en-
countered during maneuver loading, using a constant mass-per-hinge-moment
value. This actuator mass value ranges from 214.5 kg (root) to 26.3 kg (tip).
The mass of each control surface flap is proportional to the surface area of the
wedge, and ranges from 140.4 kg (root) to 35.4 kg (tip). Actuators are modeled
with third-order transfer functions, and are assumed to be irreversible, and as
such the control deflections are unaffected by the aerodynamic hinge moments,
simplifying the aeroservoelastic equations (detailed below) considerably [21].

The paneling scheme used to model steady and unsteady linear aerodynamic
loads over the vehicle is shown in Fig. 2, with a total of 4,150 panels. A finer
mesh is used toward the hinge line of the control surfaces, in order to improve the
accuracy of the aeroservoelastic loads generated by deflections. Non-structural
lumped mass distributions are also shown in the figure, to model the fuel (44,800
kg), engine (11,400 kg), and various unmodeled components in the leading and
trailing edges of the wing (5,480 kg). The total mass of the 20 control surfaces
and their actuators is 3,935 kg, and a fixed mass of 63,700 kg is used to model
the remainder of the half-airplane (fuselage, etc.). Typical structural masses
(for a single wingbox) will range during optimization from 10,000 to 20,000 kg.
The TOGW for the entire vehicle is then roughly 300,000 kg.

3. Static Aeroelastic Modeling

Airplane maneuvers are considered to occur slow enough to warrant only static
aeroelastic modeling: dynamic aeroelasticity is ignored in this section. Maneu-
ver loads are computed with the following coupled linear static equation:

As · xs +Bs · θ = Fs (1)

This equation couples the finite element analysis, aerodynamic analysis, and the
trim equations into a monolithic static aeroelastic analysis [22]. The static aeroe-
lastic solution vector is xs, which contains the structural wingbox deformations,
u, the aerodynamic pressures, Cp, the trim angle of attack, α, and the trim el-
evator setting δ. The matrix As contains the finite element stiffness matrix,
the aerodynamic influence coefficients, and various load-displacement transfer
vectors. The vector θ is the commanded steady rotation of each trailing edge
control surface, and Bs transfers the resulting loads onto the aeroelastic system.
Finally, Fs contains vectors of inertial and thrust forces, jig shape downwash,
and trim settings (desired load factor, etc.).
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Unlike the dynamic aeroelastic equations that follow in the next section, the
static structural deformation, u, computed in Eq. 1 is done without the aid
of a modal basis approximation, and is solved in the full finite element space.
Having computed this deformation, plane stresses are computed for each shell
finite element:  σx

σy
σxy


e

= Bσe
· u (2)

where the matrix Bσe
is different for each element e. To facilitate a buck-

ling analysis, in-plane tractions may be computed for each stiffened skin panel
(delineated by ribs): {

Nx
Nxy

}
e

= BNe
· u (3)

These panel-level tractions are computed via BNe
, which averages the stress

values across the skin panel, and multiplies by the appropriate thickness value.
Global buckling of each stiffened panel (bordered by ribs and spars) and local
buckling between each stiffener are separately accounted for, via assumed sim-
ply supported boundary conditions along the perimeter of the panel, and an
assumption of linearity.

Quadratic failure surfaces are given by sT · F · s + f · s ≤ 1. For stresses,
the von Mises failure criterion is:

F =
1

σ2
Y

 1 −1/2 0
−1/2 1 0

0 0 3

 f = 0 (4)

For buckling, these terms are:

F =
1

N2
xy,cr

[
0 0
0 1

]
f =

1

Nx,cr

{
1
0

}
(5)

where the critical buckling loads Nx,cr and Nxy,cr are dependent upon the
panel geometry, material properties, thickness, and smeared stiffener proper-
ties. Expressions for both local and global critical buckling envelopes are given
in Ref. [20], along with other relevant details concerning the panel buckling
computations used here.

The von Mises failure index is computed of each of the 21,300 finite elements
via Eqs. 2 and 4, and then compressed into a set of 13 Kreisselmeier-Steinhauser
(KS) functions [23]: three for the upper skins, three for the lower skins, three for
the ribs, and four for the spars. Similarly, the global and local buckling failure
indices are computed for each of the 114 upper and lower skin panels via Eqs. 3
and 5, and then compressed into 8 KS functions: four each for the upper and
lower skins. If each of these KS functions is less than one, then the inequality
sT · F · s+ f · s ≤ 1 holds.

Six load cases are utilized here, summarized in Table 1, each of which is a
longitudinal load case. Detailed aircraft design will of course be driven by a
far larger set of cases (including a lateral maneuver such as a roll), but this
set is reduced here in order to keep the computational cost tractable. Further-
more, no load case has been specifically dedicated to computing control surface
reversal, though the closed-loop MLA load cases should provide information
about poorly-performing control surfaces, and also provide the optimizer with
information about how to improve the situation (i.e., structural stiffening), if
needed.

Referencing Table 1, load cases 1 and 2 are both run at 2.5g, but case
1 features maneuver load alleviation from the control surfaces (θ in Eq. 1),
whereas case 2 does not: θ is set to 0. Forcing the optimizer to account for load
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Table 1: Summary of
static aeroelastic load
cases.

Case N Mach Altitude Safety Factor Actuator Status
1 2.5 0.64 0 ft 1.5 closed-loop
2 2.5 0.64 0 ft 1.3 open-loop
3 -1 0.64 0 ft 1.5 closed-loop
4 -1 0.64 0 ft 1.3 open-loop
5 1 0.85 35,000 ft 1.5 open-loop
6 2 - - 1.5 open-loop

cases that do not benefit from control surface-based aeroelastic tailoring (albeit
at a lower safety factor) prevents overly-large mass reductions and injects a level
of risk-reduction into the design process. In the unlikely event that the control
surfaces are not working properly during flight, satisfaction of these open-loop
load cases will ensure that the wing structure does not fail, though at a lower
safety factor. A similar open/closed-loop dynamic is used for load cases 3 and
4, at -1g.

Load case 5 is a 1g cruise case, only included to facilitate gust loads in the
following sections. The final load case 6 is a simple 2g inertial-only landing
load, and is not aeroelastically coupled. Load case 6 is expected to dissuade
the optimizer from allocating excessive material towards the wing tip (which
otherwise may be beneficial from an inertial relief standpoint), and also size the
lower skins for static buckling, along with the -1g cases.

4. Dynamic Aeroelastic Modeling

The dynamic aeroelastic behavior of the wing is modeled in the time domain
(state-space), via modal coordinates: u = φ · η, where φ is a matrix of mode
shapes, and η is a vector of modal amplitudes. Rigid body modes are included,
but only symmetric motion: hence the first two modes of φ are pitch and plunge.
The equations of motion are:

ẋ = A · x+Bθ · θ +Bδ · δ +Bw · w (6)

The dynamic aeroelastic solution vector x contains the modal amplitudes, η,
their time derivatives, η̇, aerodynamic lag states via a Roger approximation [24],
control surface aerodynamic terms and their lag states, third-order actuator
modeling terms, gust column aerodynamic lag terms, and gust forming filter
terms. The control surface deflection vector θ is retained from the previous
section (though the actual control surface deflection experienced by the wing will
be attenuated via the third-order actuator models), as is the elevator deflection
δ. Finally, w is a white noise input meant to emulate a gust signal, which is
sent through a forming filter embedded within A. Additional details concerning
Eq. 6 can be found in Refs. [7], [11], and [16].

A simple FCS is implemented via the equation δ = −Kδ · x, which drives
the elevator motion based on proportional control from the vehicle rigid body
pitch and pitch rate. The terms within Kδ are held fixed throughout all of the
optimization results presented here.

4.1 Flutter Constraints

For the derivation of flutter constraints, AFS is not considered (i.e., θ = 0).
Eigenvalues of A = A − Bδ · Kδ are given by s = γ + i · ω. For a given
Mach number, these eigenvalues may be tracked across a range of matched
point equivalent air speeds. Speeds at which a given eigenvalue crosses into
the right-half plane (γ = 0) are instability points: termed flutter if ω is non-
zero, divergence in the case of ω = 0. An instability constraint is formulated
by imposing upper limits on the damping γ of each mode (either flutter or
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divergence), at all equivalent air speeds (UEAS) of interest [25]. Specifically,
each damping value is constrained to lie beneath the piecewise polynomial:

γ ≤

{
0 0 ≤ UEAS ≤ U∗

c · (UEAS − U∗)2 UEAS > U∗
(7)

The minimum allowable flutter equivalent air speed is U∗, computed from the
desired flutter margin (1.15) and the flight envelope (using a 185 m/s dive
speed). Critical UEAS points (local minima) of the inequality in Eq. 7 are
computed and lumped together into a single KS constraint. As above, if this
constraint is greater than one, then Eq. 7 is not satisfied, and the structure does
not meet the required flutter margin.

The quadratic parameter c is included in order to allow for the optimizer to
“see” flutter mechanisms that are non-critical (i.e., a UEAS larger than U∗), but
may become critical across changes in the parameter space. The parameter, set
to 500 for this work, must be large enough so as not to unduly penalize non-
critical flutter mechanisms, but also small enough so that the design derivative
of those non-critical flutter points are well-defined when they are in the vicinity
of U∗.

4.2 Gust Constraints

The state covariance matrix,X, due to a gust input, is computed via a Lyapunov
equation:

A ·X +X ·AT
+Q = 0 (8)

where Q = Bw · U2
σ ·BT

w . The continuous turbulence design gust velocity, Uσ,
is taken here to be 25.9 m/s [17, 26], and the gust is considered frozen in that it
is uneffected by the presence of the airplane. Having computed the covariance
X, it is desired to compute the 3×3 stress covariance matrix (in terms of σx,
σy, and σxy) for each finite element, and the 2×2 traction covariance matrix (in
terms of Nx and Nxy) for each stiffened panel. Attempting to compute these
via a transformation based upon Bσe

·φ ·η will not work, since stresses are not
easily extracted from modal quantities. Instead, modal acceleration (MA) must
be used, a technique exhaustively described in Ref. [16], in the context of gust
loads. Only cursory details will be given here.

The modally-reduced elastic, inertial, and aerodynamic terms that constitute
the aeroservoelastic equations of motion in Eq. 6 can be alternatively written
in the Laplace domain:

(s2 ·M ss
+ s ·Css

+K
ss − q ·Ass

) · η
+ (s2 ·M sc − q ·Asc

) · Θ − q ·Ase · δ = q ·Asg · wg/U (9)

where M , C, K, and A are the mass, damping, stiffness, and aerodynamic
matrices, respectively, and the overbar designates a modally-reduced quantity.
q is the dynamic pressure, Θ is the control surface rotation (related to θ via a
series of third order actuator transfer functions), and wg is the speed of the gust
column, related to w via a forming filter. The ss, sc, se, and sg superscripts des-
ignate structure-on-structure, control-on-structure, elevator-on-structure, and
gust-on-structure partitioning, where the “structure” designation includes both
rigid body modes and elastic modes.

For MA, the modally-reduced matrices in Eq. 9 must be partially un-projected
back into the full-order finite element space. The columns of these matrices can
remain in modal space, but the rows must be in the full-order finite element
space. These new matrices may be designated as M ss · φ, etc., where M ss

is the full-order mass matrix. The full-order structural deformation vector can
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then be computed as:

u = (Kss)−1 ·
(
−(s2 ·M ss + s ·Css − q ·Ass) · φ · η

−(s2 ·M sc − q ·Asc) · Θ + q ·Ase · δ + q ·Asg · wg/U
)

(10)

Converting Eq. 10 back from the Laplace domain into the state-space terms
used for Eq. 6, leads to a MA equation of the form:

u = H · x (11)

where H involves solving a system of equations of the full-order stiffness matrix
Kss, with the number of right-hand-sides equal to the size of the aeroservoelastic
solution vector x. The 3×3 stress covariance matrix of each finite element is
then given by:

Cσe = Bσe ·H ·X ·HT ·BT
σe

(12)

A similar 2×2 traction covariance matrix can be computed for the buckling of
each stiffened panel.

Stresses are assumed to be the sum of 1g loads (computed via load case 5 in
Table 1) and the gust loads: σx

σy
σxy


e

= se = se1 + seg (13)

An equal-probability hyper-surface, of the stochastic gust loads, is then written
as:

sTeg · (Cσe)
−1 · seg = 1 (14)

If the surface of Eq. 14 lies entirely within the failure envelope of Eq. 4, then
the gust loads are considered acceptable. The critical point along the hyper-
surface is that with the closest proximity to the failure surface. This critical
point can be found with a method developed in Ref. [17], and involves solving
the following constrained optimization problem:

maximize: ge = sTe · F · se + f · se − 1

subject to: (se − se1)
T · (Cσe)

−1 · (se − se1) = 1 (15)

If the optimal ge value is less than 0, then the gust-stress constraint is satisfied.
A graphical example of this is shown in Fig. 3 for a two-dimensional case.

ge is computed for each shell finite element along the wingbox, and then
compressed into a single KS aggregation function. Static stress values in the
previous section had been compressed into 13 separate KS functions, but due
to the large computational costs of computing the adjoint design derivatives of
the MA matrix, H (discussed in more detail below), only a single aggregation is
considered here. This choice adds more conservatism into the KS approximation.

Similar methods to Eqs. 12-15 may be considered for skin buckling, and
again wrapped into a single KS constraint. A significant approximation is made
here, however, in that the buckling envelope (Nx,cr and Nxy,cr) used to build F
and f in Eq. 15 is assumed to be static, independent of the loading frequency.
This is known to be untrue [27], but the inclusion of a load-dependent failure
envelope is not easily accommodated in the above framework, and is left for
future work. Fatigue life, another potentially important design consideration
for the gust-constrained problem considered here, is similarly ignored.
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Figure 3: Two-
dimensional example
of an equal-probability
hyper-surface and an
elliptic failure boundary.

4.2.1 Open-Loop Gust Constraints

For open-loop analysis, the control surface rotations (commanded rotation θ and
actual rotation Θ) are set equal to 0. The FCS controller driving the elevator
motion δ remains active, and the safety factor associated with gust-based stress
and buckling constraints is set to 1.5.

4.2.2 Closed-Loop Gust Constraints

For closed-loop analysis, both linear quadratic regulator (LQR) and linear quadratic
Gaussian (LQG) controllers are used to drive the trailing edge control sur-
faces in this work. For LQR, under the assumption of stationary control and a
continuous-time system, a controller is assumed of the form θ = −Kθ · x, and
computed by minimizing the typical cost function [28]:

J =
1

2
·
∫ ∞
0

(xT ·Qx · x+ θT ·Rθ · θ) · dt (16)

where Qx is the state weighting matrix, and Rθ is the control weighting matrix.
The gust constraint process described above is the same, with the exception that
now Eq. 8 uses A = A−Bδ ·Kδ −Bθ ·Kθ. The MA matrix, H, is identical to
the previous section, since the state vector x is independent of the commanded
control surface rotations θ, but only a function of the actual control surface
rotations Θ.

LQR assumes full-state feedback, which is rarely available. LQG assumes
the presence of an output based on actual sensors: y = Cx ·x+Dθ ·θ+Dδ ·δ+v,
where v is the sensor noise. For this work, six triaxial accelerometers are dis-
tributed along the wingbox, six strain gage rosettes are distributed along the
upper skins, and six rosettes along the lower skins. The success of aeroservoe-
lastic control is known to be dependent on optimal sensor placement [29], but
such a study is out of scope for this work. Here, each of these sensor fami-
lies (accelerometers, upper skin gages, lower skin gages) are allocated along the
wingbox in a simple matrix of two chordwise and three spanwise.

The relevant A matrix is now augmented by observer terms:

A =

[
A−Bδ ·Kδ −Bθ ·Kθ Bδ ·Kδ +Bθ ·Kθ

0 A−L ·Cx

]
(17)

where L is the Kalman gain, computed with a similar cost function as in Eq. 16,
but with the state weighting Qx replaced with the process noise matrix Bw ·
U2
σ ·BT

w from Eq. 8, and the control weighting Rθ replaced with the covariance
matrix of the sensor noise v, designated as Rv [28]. The relevant Q matrix is
now:

Q =

[
Bw 0
Bw −L

]
·
[
U2
σ 0

0 Rv

]
·
[
Bw 0
Bw −L

]T
(18)
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Table 2: Optimization
definition.

minimize: structural mass
subject to: design variable side limits qLB ≤ q ≤ qUB

static stress constraints KSσ,i ≤ 1
static buckling constraints KSµ,i ≤ 1
flutter constraint KSfl ≤ 1
open-loop gust stress constraint KSσgust,OL

≤ 1
open-loop gust buckling constraint KSµgust,OL

≤ 1
closed-loop gust stress constraint KSσgust,CL

≤ 1
closed-loop gust buckling constraint KSµgust,CL

≤ 1
closed-loop gust rotation RMS constraint KS θ̇gust,CL

≤ 1

stiffener - shell thickness difference limits KSt/ts ≤ 1
stiffener aspect ratio limits KSAR ≤ 1

Using these new definitions of A and Q in Eqs. 17 and 18, the state covari-
ance matrix X may be computed via Eq. 8, where X has twice the number of
states as for the LQR case, or the un-controlled case, due to the observer terms.
These observer terms have no impact on the modal acceleration process, and so
the MA matrix must simply be augmented by a zero-matrix: [ H 0 ]. The
remaining MA process of Eqs. 12-15 is the same as above.

If GLA is to be considered in the optimization process, closed-loop gust
constraints (stress and buckling) are augmented with a safety factor of 1.5.
Similar to the methods used for static MLA, an open-loop gust constraint is
retained, albeit at a lower safety factor of 1.3.

5. Optimization Definition

The optimization problem definition is given in Table 2, and is solved with a
gradient-based method. The objective function to be minimized is the struc-
tural wingbox mass. Design variables q include sizing variables, MLA rotation
variables, and control law variables. For sizing, the wingbox is broken into
283 design patches, where each rib-delineated skin panel is a patch, each rib-
delineated spar section is a patch, and each rib is a patch. Within each patch,
the thickness of each shell member (t, ranging from 3 to 30 mm), the thick-
ness of the stiffeners attached to these shells (ts, ranging from 2.5 to 30 mm),
and the height of the stiffeners (hs, ranging from 30 to 100 mm, except in the
rib and spar webs, where the lower bound is 64 mm), are independently opti-
mized. For this work, the height of each T-stiffener web is set equal to the flange
width, and the thickness of the web and flange are equal as well, as drawn in
Fig. 4. It should be emphasized that the aerodynamic jig shape of the wing is
frozen here (planform, airfoil, etc.), as is the structural topology (layout of ribs
and stiffeners): the sizing variables described above have no impact on these
parameters.

MLA rotation design variables include the vector of commanded control
surface rotations, θ, for the closed-loop maneuver load cases 1 and 3 in Table 1,
bounded by ±10◦. These bounds are chosen to be large enough such that the
MLA variables can appreciably impact the aerodynamic loads, but not so large
that the optimizer will push the local flow state to a region that would not
be well-modeled here (i.e., flow separation). The control law design variables
are the members of the diagonal control weighting matrix Rθ (one variable
per control surface), bounded between 10−2 and 1012. These final bounds are
simply chosen to be wide enough such that they will be inactive throughout the
optimization process.

Design constraints are also listed in Table 2, and include the static stress
constraints KSσ. The number of static stress constraints is Nσ ·NL, where Nσ
is the number of aggregation parameters (set to 13 as noted above), and NL is
the number of load cases (6 in Table 1). Similarly, KSµ are the static buckling
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Figure 4: Example T-
stiffener geometry.

constraints, numbering Nσ · Nµ total, with Nµ set to 8. A flutter constraint
(Eq. 7), open- and closed-loop stress-based gust constraints, and open- and
closed-loop buckling-based gust constraints (Eq. 15) are also included. As a
surrogate on controller cost, the RMS rotation rate for each control surface
during closed-loop GLA is computed via the covariance matrix X, aggregated
into a single KS constraint KS θ̇gust,CL

, and forced to be less than some threshold

[2]. Ref. [30] provides guidance on reasonable ratios between rate saturation and
the allowable RMS value (i.e., three standard-deviations): a range of limits are
explored here. Furthermore, the same rotation rate limits are imposed on each
control surface, an over-simplification given the range of actuator sizes used
from root to tip.

The final two constraints in Table 2 regulate the stiffener geometry. It is
desired that, for a given design patch, the shell thickness be within 2.5 mm of
the stiffener thickness. These constraints are normalized to 1 for each design
patch, and then all aggregated into a single metric, KSt/ts . Similarly, the
aspect ratio of each stiffener should not be greater than 15, constraints which
are normalized to 1 and then compressed into a single constraint, KSAR.

Each set of design variables is passed through a linearly-decaying cone-shape
filter [31] in order to prevent the difference in stiffness between adjacent patches,
or the difference in actuation between adjacent control surfaces, from being too
large. The gradient-based optimization problem of Table 2 is solved with the
Globally-Convergent Method of Moving Asymptotes tool (GCMMA) [32]. De-
sign derivatives of the static aeroelastic system in Eq. 1 are computed with
the adjoint method, and derivatives of the flutter constraint in Eq. 7 are com-
puted with eigenvalue sensitivity analysis methods [33]. Derivatives of the gust
constraints are substantially more complex. Starting with Eq. 15, four design
variable dependencies must be included in the chain rule:

• Derivatives of ge with respect to the covariance matrix X, and explicit
derivatives of X with respect to the design variables q. The latter in-
volves differentiating the Lyapunov equation, and for closed-loop cases,
derivatives of the LQR or LQG controllers must also be included [34].

• Derivatives of ge with respect to the MA matrix H, and explicit deriva-
tives of H with respect to the design variables q. The derivatives of H
are computed via the adjoint method, which involves solving a system of
equations on the stiffness matrixKss, with the number of right-hand-sides
equal to the size of the covariance matrix X multiplied by the number of
KS constraints. Given the large cost of this operation, only a single KS
constraint is included for stress and buckling in Table 2, as noted previ-
ously.

• Derivatives of ge with respect to the 1g loads se1 , computed via an adjoint
computation of Eq. 1.

• For buckling only, derivatives of ge with respect to the failure envelope F
and f , and the derivative of this envelope with respect to the sizing design
variables.

Further details of the gust constraint sensitivity analysis process are outlined in
Ref. [16] and [17].
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Figure 5: Optimization
convergence with and
without MLA.

Figure 6: Optimization
distribution of t, ts, and
hs along the wingbox.

6. Results

Aeroelastic optimization results are conducted in five stages. First, only static
aeroelastic optimization of an un-sized baseline wingbox is considered, without
MLA. Secondly, MLA-based design variables (i.e., the vector of control surface
rotations, θ) are included. Third, a flutter constraint is added. Fourth, open-
loop gust constraints are added. Fifth, closed-loop gust constraints are added, as
are the controller-based design variables (i.e., the members of the matrix Rθ).
The convergence results of stages 1-4 are shown in Fig. 5, with and without
MLA. Stage 1 converges to a structural wingbox mass of 18,666 kg; the optimal
sizing parameters along the wingbox are shown in Fig. 6, in terms of t, ts, and
hs of each design patch.

This first-stage aeroelastic sizing converges after 91 iterations; MLA design
variables (lower portion of Fig. 5) are included betweens iterations 92 and 144.
Structural mass decreases substantially, from 18,666 kg to 13,349 kg, and the
optimal control surface rotation variables for the closed-loop cases 1 (2.5g) and
3 (−1g) are shown in Fig. 7. For the positive load case, MLA shifts the center
of lift towards the root, with negative rotations (load alleviation) outboard for
bending moment reductions, and positive rotations (load augmentation) inboard
to help maintain trim. The optimal sizing variables are qualitatively similar to
those seen in Fig. 6 (though thinner throughout), and are not shown. The
mass reduction due to MLA is expected to be proportional to the open-loop
safety factors, set to 1.3 here. A lower value will allow the optimizer to remove
additional mass; a value of 1.5 (equal to that attached to the closed-loop cases)
will revert the structural mass back to 18,666 kg, which is the same value found
by the optimizer without MLA included.

After the second-stage MLA results converge at iteration 144, a flutter con-
straint is added (increasing the structural mass to 14,622 kg), and an open-loop
gust constraint is subsequently added (increasing the structural mass to 16,078
kg). These structural mass penalties due to dynamic aeroelastic constraints are
substantial: relative to the static aeroelastic MLA result, the flutter constraint
penalizes mass by 9.5%, and the open-loop gust constraint by 20.4%. This is in
strong contrast to the results without MLA included (upper portion of Fig. 5),
where the flutter and gust constraints only add 1.4% and 3.6%, respectively.

Vol. 6, No. 1, pp. 21–41 ASDJournal



Bret Stanford
∣∣∣ 33

Figure 7: Optimal
control surface rotations
during the two closed-
loop static aeroelastic
maneuvers.

Figure 8: Eigenvalue mi-
gration (real part) before
and after the flutter con-
straint is implemented;
constraint boundary in-
dicated by thick dashed
line.

Only aeroelastic optimization with MLA included is considered for the remain-
der of the results in this paper.

Eigenvalue migration plots (real part only) of the third-stage design results
are shown in Fig. 8 (real part) and Fig. 9 (imaginary part), both before and after
the addition of the flutter constraint in Eq. 7. This flutter constraint is highly
active for the final feasible design on the right side of Fig. 8, with four roots
strongly interacting with the constraint boundary: the phugoid mode, the sec-
ond bending mode (exhibits a “hard” flutter mechanism), an in-plane bending
mode, and a torsional engine-pitch mode (both exhibiting softer “hump” flutter
mechanisms). It should be noted that one or both of these hump mechanisms
may become non-critical with the advent of structural damping, which has not
been included in this work. Finally, the open-loop buckling constraint is added
to Fig. 5 for the fourth design stage. Flutter plots for this final design are very
similar to those shown in Fig. 8, and are not given here. Gust-based buckling
constraints (ge from Eq. 15) are shown in Fig. 10.

The gust buckling constraint is less than 0 for all of the upper and lower skin
panels throughout the wingbox, indicative of a feasible design. The constraint
is in fact active, but the largest ge is -0.21, which is a result of the conservatism
of the KS function. The equal-probability surface, failure surface, 1g loads, and
the most-probable failure point (i.e., the point which maximizes ge in Eq. 15)
are also shown in the figure, for three selected panels. The axial loads Nx are
clearly more prevalent than the shear loads Nxy for both the steady 1g case
as well as the probabilistic gust covariance. Panel 66 (lower skins towards the

Figure 9: Eigenvalue
migration (imaginary
part) before and after
the flutter constraint is
implemented.
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Figure 10: Open-loop
gust-based buckling con-
straints along the paneled
wingbox, and probabilis-
tic failure boundaries for
three selected panels.

Figure 11: Open-loop
gust-based buckling con-
straints along the pan-
eled wingbox, with iso-
lated contributions from
trim loads (left) and gust
loads (center).

wingtip) is a case where the gust loads alone would be large enough to cause
a failure, but the stabilizing effect of the 1g loads (namely the tensile stresses
along the lower skins of the deformed wing) retains the equal-probability surface
within the failure envelope. This is in contrast to panels 5 and 50 in Fig. 10
(upper skins at tip and root, respectively), where the gust loads and the trim
loads are largely additive. Finally, it is repeated here that the failure boundaries
of Fig. 10 are assumed to be static, when in fact there will be some dependence
on the loading frequency [27], rendering this failure surface non-deterministic in
addition to the gust response.

Additional insight into these buckling constraints is given in Fig. 11, which
shows isolated contributions to the ge constraint from trimmed 1g loads only
(by setting the covariance matrix to 0), from gust loads only (by setting the

Figure 12: Open-loop
gust-based stress con-
straints along the paneled
wingbox, with isolated
contributions from trim
loads (left) and gust loads
(center).
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Figure 13: Structural
mass increase with
reduced controller
effectiveness.

1g loads to 0), and the combined contribution. This final third plot in Fig. 11
of the combined contribution is reproduced from Fig. 10. Similar results are
given for the gust-based stress constraints in Fig. 12. Stress-based failure and
equal-probability surfaces for various points along the wingbox are not easily
plotted (analogous to the results in Fig. 10), owing to the third dimension: both
surfaces are three-dimensional ellipsoids.

The complete gust constraints in Figs. 11 and 12 are not a linear sum of the
individual trim and gust contributions, owing to the highly nonlinear operators
involved in the solution to Eq. 15. For buckling, the trimmed 1g constraint
values are higher in the upper skins than lower, as the former is deformed
in compression, and thus more buckling prone. Furthermore, these buckling
constraints are nearly uniform along the upper surface, which is largely the
result of the optimizer sizing each panel so as to remain free of buckling during
the 2.5g static loads. Though not shown here, this 2.5g static buckling constraint
is nearly active throughout the entire upper surface; the 1g buckling constraint is
nearly uniform as well (though of course not active). Gust constraints purely due
to the gust covariance (middle drawing in Figs. 11) are concentrated outboard,
presumably due to the high inertial loads. This leads to the aforementioned
situation where pure gust-based buckling loads are infeasibly large; only the
addition of the stabilizing 1g loads produces a feasible combined response.

The dynamic stress constraints in Fig. 12 show similar trends to the buckling
results: peak static 1g stresses occur at the stress concentration near the trailing
edge of the wing root. Combining this result with the dynamic gust loads helps
push the high stress constraints outboard. The aggregate stress constraint is
active in the final design, but again owing to the conservatism of the KS method,
the highest stress-based ge for any of the finite elements is only -0.2. Strategies
to adaptively reduce the conservatism of KS constraints have been addressed
(see Ref. [35], for example), but are not pursued here.

Design stages 1-4 are shown in Fig. 5: 1) initial static aeroelastic sizing, 2)
MLA, 3) flutter constraints, and 4) open-loop gust constraints. The final stage
is the introduction of closed-loop gust constraints. This is done by reducing the
safety factor of the open-loop gust constraints (stress and buckling) from 1.5
to 1.3, adding closed-loop gust constraints (stress and buckling) with a safety
factor of 1.5, adding a constraint on the maximum allowable control surface
rotation rate RMS [2], and finally adding the control weighting design variables
(members of Rθ). The optimal structural wingbox mass, across a range of RMS
rate limits, is shown in Fig. 13, for both LQR and LQG controllers.

In addition to the LQR/LQG data, three additional structural mass values
are indicated in Fig. 13, to bracket the data. First is the structural mass without
any gust constraints, 14,622 kg, also shown in Fig. 5 at the end of the flutter-
constrained optimization stage-3. Second is the structural mass when only an
open-loop gust constraint is included with a safety factor of 1.5: 16,078 kg, also
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shown in Fig. 5 at the end of the gust-constrained stage-4. The prime goal
here is to erase/recover this latter impact through the use of GLA (AFS could
also be used to recover the mass penalty arising from the flutter constraint [18],
but this is not considered here). The final mass value shown in Fig. 13 is the
optimal structural mass when only an open-loop gust constraint with a safety
factor of 1.3 is considered: 14,741 kg. It can then be seen that the mass penalty
when imposing an open-loop 1.5 gust constraint is substantial, but only a minor
change arises from an open-loop 1.3 gust constraint. This last structural mass
value of 14,741 kg is relevant because the GLA optimization cases (both LQR
and LQG) converge to it, when large control surface rotation rates are allowed.
In other words, if control cost is of no concern, the GLA controller is able to
satisfy the closed-loop stress and buckling constraints entirely, without the need
to stiffen the structure (and thus increase the structural mass). The wingbox
can only satisfy the open-loop gust constraints using passive means.

Decreasing the allowed rotation rate RMS (i.e., making this constraint harder
to satisfy), generally reduces the effectiveness of the GLA controller, and forces
the closed-loop gust constraints to be partially borne by the wingbox itself, in-
creasing the structural mass. For LQR, this begins to happen when the allowable
rate RMS is forced below 50 deg./s. For RMS values below 2 deg./s, the LQR
controller is completely ineffective, and the closed-loop gust constraints must
be entirely satisfied by the wingbox. The optimal structural mass regresses to
the same value found when only an open-loop gust constraint is included with a
safety factor of 1.5: 16,078 kg. In this limiting case, the closed-loop constraint
has effectively been converted into an open-loop constraint.

It can also be seen in Fig. 13 that the LQG controller is less effective than
its LQR counterpart. This is perhaps expected given that the LQG controller
is driven by a finite amount of sensor data (triaxial accelerometers and strain
gage rosettes), whereas LQR assumes full-state feedback. The LQR controller
loses most of its effectiveness when the rotation rate RMS is forced below 2
deg./s, but this occurs for LQG at a much higher value of 30 deg./s. Of course,
the LQG controller is defined by many parameters which have not been fully
explored here, including sensor noise Rv and the number/location/type of the
sensors themselves. Different values for these parameters may change the LQG
performance seen in Fig. 13.

The control surface rotations are shown for both LQR and LQG controllers
in Fig. 14, for the case where there is no constraint on rotation rate RMS. As
noted above, in this case both controllers are able to entirely satisfy the closed-
loop gust constraints without the need to increase structural mass. Rotation
rates are quite high as a result, with peak RMS values reaching 120 deg./s for
the LQR controller, and 168 deg./s for LQG. The energy distribution of the two
controllers is very different as well, with LQR concentrating high rotation rates
towards the root (presumably driven by rigid body motions), while LQG is more
evenly distributed over the wing. Though not included in the optimization in
any way, control surface rotation angle RMS is shown in Fig. 14 as well, with
the general trends mirroring the angular rate RMS values [30], as expected.
Elevator motions, driven by the FCS, are also shown in the figure, with the
understanding that angular RMS values of the oscillating elevator would in
reality be superimposed upon the steady elevator deflection needed for 1g trim
(which is not shown).

Finally, an extension of Fig. 14 is shown in Fig. 15, for the controlled cases
where the peak RMS rate is limited to 40 deg./s. As with previous results,
the largest rate RMS value seen in the figure is less than 40 deg./s, owing to
the conservatism of the KS constraint. Unlike with the previous un-constrained
result in Fig. 14, the constrained results in Fig. 15 demonstrate a less-smooth
variation in control surface motion along the trailing edge: this is due to the
optimizer’s aggressive use of the control law design variables (Rθ) in order to
satisfy design constraints. These optimal values are not shown here, but can
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Figure 14: Control sur-
face and elevator RMS
motion for the case with-
out limits on rate RMS.

Figure 15: Control sur-
face and elevator RMS
motion for the case where
rate RMS is limited to 40
deg./s.

vary by orders of magnitude from the wing root to the tip.

7. Conclusions

This work has considered aeroservoelastic optimization of the Common Re-
search Model transport configuration, with a standard rib/spar/skin/stiffener
wingbox, and outfitted with several electrohydraulic control surfaces along the
trailing edge. These control surfaces are used for both maneuver load alleviation
and gust load alleviation. The objective function is to minimize structural mass,
and design variables are set for detailed sizing of the wingbox members, steady
control surface deflections during maneuver load alleviation, and distributed
parameters used to define the closed-loop controllers for gust load alleviation.
Aeroelastic design constraints include steady stress and buckling metrics across
several trimmed maneuver loads, as well as flutter constraints, but the novel
aspect of this paper is in the gust constraint formulation, which involves com-
puting stress/buckling metrics in response to a stochastic continuous gust input.
The formulation of these constraints echoes previous work done in Refs. [16] and
[17], but is demonstrated here, for the first time, in the context of a complete
design optimization for a relatively realistic airplane configuration.

A summary of the various cases considered in this work is tabulated in
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Table 3: Summary of op-
timization cases (1).

case MLA? flutter margin OL gust SF CL gust SF rate RMS
1 no - - - -
2 no 1.15 - - -
3 no 1.15 1.5 - -
4 yes - - - -
5 yes 1.15 - - -
6 yes 1.15 1.3 - -
7 yes 1.15 1.5 - -
8 yes 1.15 1.3 1.5 no limit, LQR
9 yes 1.15 1.3 1.5 no limit, LQG

10 yes 1.15 1.3 1.5 40 deg./s, LQR
11 yes 1.15 1.3 1.5 40 deg./s, LQG

Table 3 and 4, with design variables and constraints phased in sequentially. At
each design phase, each of the available constraints is active. Adding a gust
constraint to a design which is already flutter-constrained, for example, returns
a design which is both gust-constrained and flutter-constrained. As such, the
latter designs in the tables are highly-constrained, with both the open-loop and
closed-loop gust constraints active. The sensitivity of the optimal results to
the introduction of new design variables or constraints can be inferred from the
subsequent change (a decrease for introduce design variables, an increase for
introduced constraints) in the optimal structural mass.

Referencing Table 3 and 4, the dynamic aeroelastic constraints (flutter and
gust) do not have a sizable impact on the problem if maneuver load alleviation is
not considered, as the static stress and buckling constraints are stronger design
drivers. Introducing maneuver load alleviation allows the optimizer to remove
a significant amount of structural mass, thus rendering both flutter and gust
as stronger drivers. If control cost is of no concern, the increase in structural
mass introduced through the gust constraints can be largely recovered through
closed-loop control. Handicapping the control surface rotation rates limits the
effectiveness of the controllers, forcing the optimizer to add structural mass in
order to (partially, at least) passively control the gust response. LQG controllers
are more susceptible to this degradation than LQR, given that they are driven
by a finite amount of sensor data.

The optimization process considered here has only considered linear aeroser-
voelastic models, though the configuration under consideration would likely be
subject to a number of nonlinearities, including large structural deformations
and aerodynamic shocks, which should be included in future work. If gust per-
turbations can be considered small relative to the trimmed cruise state, then
a linearized analysis will suffice, and many of the gust-based design ideas im-
plemented here (forming filters, Lyapunov equations, equal-probability failure
surfaces, etc.) will convey; i.e., the nonlinearities will be confined to the static
deformation.

The results presented here are of a preliminary nature, due to the above issue,
as well as the fact that the number of load cases considered here is far fewer than
would need to be considered in practice. However, the current result set does
provide a groundwork for handling a set of certain aeroservoelastic metrics (i.e.,
open- and closed-loop stochastic gust constraints via detailed structural stress
and buckling) that are not normally included in the design process, and further
demonstrates the quantitative impact these constraints have on the optimization
process.
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case structural mass figure
1 18,666 kg Fig. 6
2 18,939 kg Fig. 5
3 19,349 kg Fig. 5
4 13,349 kg Fig. 7
5 14.622 kg Fig. 8
6 14,741 kg Fig. 13
7 16,078 kg Fig. 10
8 14,741 kg Fig. 14
9 14,741 kg Fig. 14

10 14,883 kg Fig. 15
11 15,660 kg Fig. 15

Table 4: Summary of op-
timization cases (2).
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