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Abstract
The combined optimisation of aircraft structures and active control systems in early
design stages requires low-order unsteady aerodynamic models that are robust to struc-
tural and control surface layout modifications. A combination of the balanced proper
orthogonal decomposition with the concept of synthetic modes is proposed and dif-
ferent formulations for the generation of synthetic modes are given. The models re-
sulting from the proposed procedure are tested for their suitability and accuracy in
aero(servo)elastic analyses (stability assessment, continuous turbulence loads and cal-
culation of control surface transfer functions) of a tube-wing aircraft configuration.
The results indicate that the number and type of synthetic modes have a significant
influence on the achievable accuracy and the accuracy per order of the resulting re-
duced order model. At a required accuracy of 10−3, the most suitable set of synthetic
modes is based on radial basis functions and reduces the aerodynamic model order by
about two orders of magnitude while still being able to handle structural and control
surface layout modifications.

1. Introduction

The ever-increasing demand on cost and fuel efficiency are driving the develop-
ment of aircraft with high aspect ratio wings, lightweight structures and tech-
nologies such as active control. The resulting increased influence of structural
flexibility along with the increased interaction between structural dynamics and
aerodynamics require new ways of working in early stages of aircraft design.
Also, the growing use of active control methods such as gust load control or
aeroelastic stability control must be considered as early as possible to achieve
more optimal designs. One possibility to master this challenge is the use of
computational methods and multidisciplinary design optimisation (MDO). The
integration of a multitude of disciplines enables the uncovering of potentials that
cannot be achieved through classical iterative design methods. A part of the
integrated design of future aircraft is known as the field of aeroservoelasticity
incorporating aero-, structural and control system dynamics. Integrated models
for analysis and optimisation that originate in this field are often very complex
and computationally costly to simulate. For the optimisation problems to be
carried out in the conceptual and preliminary design stages, fast turnaround
times are required to enable the assessment of many configurations, parameter
variations and trade-offs. Typically, the modelling of transient aerodynamics
involves the highest complexity (i.e. states in the resulting model) among the
various disciplines of aeroservoelasticity and thus offers the highest potential
regarding the reduction of turnaround times and computational effort. The
present work is thus concerned with finding a solution to significantly reduce
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the dimensionality of the aerodynamic model while ensuring the required ac-
curacy in aeroelastic analyses even in the presence of considerable parameter
variations of the concept to be optimised. This solution shall enable the effi-
cient integrated optimization of active control systems (e.g. for load alleviation
or flutter suppression) along with the primary wing structure (i.e. layout and
dimensions of wing skins, spars, stiffeners and ribs). Special focus is therefore
placed on assuring the accuracy of aeroelastic analyses in the presence of pa-
rameter variations of the structure and the control systems. These variations
include on the one hand the variation of the position and size of control sur-
faces and on the other hand the variation of the stiffness and mass distribution
of the primary structure. In aircraft design, analyses of the aeroservoelastic
model (stability, flight loads and control law synthesis) must be carried out at
many flight points to verify a design point across the targeted flight envelope.
The number of equations required for the generation of the models ranges from
103−104 (potential flow based methods) to > 106 (higher order methods) solely
for the aerodynamics. Order reduction before analysis is inevitable to enable
the many studies in a reasonable time frame. On the global or system level,
many conventional approaches exist which originated from control engineering.
The most intuitive method is simply truncating certain states that are not sig-
nificantly influencing the dynamics. The selection, however, requires precise
knowledge of the individual states and how they contribute to the overall dy-
namics. A selection might be based on Another method for the reduction of a
dynamic model is the modal truncation. Here the selection is based on an eige-
nanalysis of the model and a transformation on a selected subset of eigenmodes
yields the reduced order model. While the eigendynamics of the full order model
might be contained in the reduced order model, the input-state and state-output
behaviour of the dynamic system are not considered during the selection of the
subset of eigenmodes. An important and widely used method that considers the
input-state and the state-output behaviour is the Balanced Truncation (BT).
Here, the system is first transformed in a balanced form so that the resulting
states are equally controllable as observable [1]. Then the model order is re-
duced by keeping only the most controllable and observable states. The method
has proven to be very efficient while producing models which closely match the
input-output behaviour of the full order models. However, for large systems as
in aeroservoelasticity, this kind of methods are often not directly applicable due
to limited computational resources. Besides, after transforming the integrated
model, the individual equations can no longer be associated with the different
disciplines. Thus, usually, an order reduction on the discipline level is performed
before the global reduction with methods suitable for the different properties of
the models (e.g. Guyan and modal reduction for structural models) [2].

In the field of fluid dynamics, several methods were developed in the past
decades. Three of the most prominent examples are the Proper Orthogonal
Decomposition (POD), also known as KarhunenLoève decomposition, the Bal-
anced Proper Orthogonal Decomposition (BPOD) and the Eigensystem Real-
ization Algorithm (ERA).

The mentioned methods fall into the category of snapshot-based methods
in which a limited collection of data from simulations or experiments is used.
In the POD, the snapshots are used to compute a vector basis which optimally
approximates the collected state snapshot data [3]. A combination of the POD
and the balanced truncation has been presented by Rowley forming the BPOD
[4]. To overcome the limitation that the POD based models can only reflect
the input-state behaviour and not the state-output behaviour, both, snapshot
simulations of primal and the adjoint or dual system are used to compute a
transformation that approximately balances the system. The ERA algorithm
tries to find a state-space realisation of a system reflecting the collected input-
output snapshot data in a balanced form. Ma et al. compare the BPOD and
the ERA algorithm yielding that theoretically, both methods produce identical
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ROMs [5]. However, an advantage of the BPOD is that it produces a set of bi-
orthogonal vectors with which the full order model can be reconstructed from the
reduced order model, while the ERA algorithm produces only the ROM without
information about the relation of the resulting states to the original states. In
other words, in case the full order system is given including its adjoint form, less
information gets lost during the model order reduction by BPOD. The BPOD
was successfully applied in reducing aerodynamic models of airfoils, cascades
and wings [6], [7].

For the generation of aerodynamic reduced order models used in aeroelastic
applications, all the previously described methods require the structural and
flight dynamic degrees of freedom to be reduced to a finite set of generalised
coordinates to reduce the number of in- and outputs of the aerodynamic model.
Thus, the resulting model is only valid and accurate for these structural degrees
of freedom. In sizing-type aeroelastic optimisation (i.e. for a fixed topology
and shape), the mass and stiffness distribution and thus the structural mode
shapes change during the design. It is therefore desirable to create one ROM
which is robust enough to capture all expected variations in the structural and
flight dynamic degrees of freedom. Fenwick et al. presented a study in which
the resulting reduced order model was interpolated from a previously created
data basis across the structural parameter range [8]. In optimisations with a
large number of structural parameters such as aircraft structure optimisations,
this requires a large amount of models to be created before the optimisation.
A suggestion to account for arbitrary structural modifications is to use signifi-
cantly more mode shapes of the basis model for the generation of the reduced
order model than used in the aeroelastic analysis [9]. This approach requires
the basis mode shapes to represent all structural modifications occurring during
the optimisation. Another method is to augment the basis mode shapes by the
introduction of fictitious masses [10]. The modal basis of the overall structure
is enriched by the integration of modes of the substructure where structural
modifications are expected or planned. The method has been especially useful
in augmenting dynamic models of fighter aircraft to enable the efficient flutter
analysis of numerous loading conditions [11]. Furthermore, the method was
successfully applied to include local deformations of actuators and their attach-
ment structure in low dimensional modal representations of the overall structure
[12]. However, it is required that all possible structural modifications and their
locations are known beforehand to ensure the required robustness.

Instead of utilising the mode shapes of the basis model, artificial mode shapes
(also referred to as prescribed or synthetic mode shapes) may be used which
are not related to the basis structural model. Voss et al. compared the use
of different functions and polynomials for generation of synthetic mode shapes
finding that only ten synthetic mode shapes are required to approximate the
first 50 structural eigenmodes of a transport aircraft regarding the Modal As-
surance Criterion (MAC) [13]. However, the different types used have not been
compared concerning their suitability to approximate the aeroelastic behaviour.
With respect to snapshot based model order reduction techniques, Zhang et
al. reproduced the snapshot data for the current mode shapes by reproject-
ing them on the snapshot data generated with Radial Basis Function (RBF)
based synthetic mode shapes [14]. Winter et al. created mode shapes based
on Chebyshev polynomials and RBFs to establish a ROM which is robust to
structural variations [15]. Their studies include a qualitative comparison of the
two different methods for basis mode shape generation concerning the accuracy
of generalised aerodynamic forces generated with the resulting ROM.

The mentioned examples study the accuracy of the resulting ROMs concern-
ing their frequency response or flutter point of an isolated wing. All the examples
deal with purely structural modifications of the basis model. In aeroservoelastic
optimisations carried out in early design stages of aircraft, also the position and
size of control surfaces may be varied. The robustness of ROMs to changes of
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the control surface layout has not been studied so far.

In this work, first, the basic concept of BT, POD and BPOD are reviewed.
The BPOD is then combined with the concept of synthetic mode shapes. There-
fore, three different methods for synthetic mode shape generation based on RBF,
Chebyshev polynomials and zonal subdivision are formulated for full aircraft
configurations including wings, horizontal and vertical tail. These synthetic
modal bases are used in the process of the aerodynamic model order reduc-
tion. After the reduction process, the aerodynamic ROMs are combined with
the flight dynamic and structural equations of motion forming the integrated
aeroelastic model. Subsequently, flutter point, continuous turbulence loads and
control surface transfer functions are computed in the presence of structural
(mass and stiffness distribution) and control surface layout variations (size and
location of the control surfaces). The influence of the number of synthetic mode
shapes used for the generation of training data on the accuracy of the resulting
ROMs is studied. Finally, a quantitative comparison of the accuracy is made
between the different approaches for synthetic mode shape generation used for
the training data generation.

2. Methodology

Each component or discipline involved in the field of aeroservoelasticity (aero-,
flight- and structural dynamics as well as sensors and actuators) can be modelled
as a dynamic system. The term modelling refers to the derivation of mathemat-
ical equations describing the behaviour of those systems. The result is mostly a
set of coupled ordinary differential equations (ODE) or partial differential equa-
tions (PDE). In the latter case, the conversion to systems of ODEs is often done
with discretisation methods as finite elements, volumes, differences or boundary
element methods. As the solution of non-linear ODEs is complex and linear
approximations can be obtained around a specific equilibrium point. For each
component in aeroservoelasticity, eventually, the result is a set of homogeneous,
linear ODEs (also known as Linear Time-Invariant (LTI) system) which can be
cast into a state space representation of the form:

ẋ = Ax + Bu

y = Cx + Du
(1)

with the state vector x ∈ Rn, the output vector y ∈ Rq and the input vec-
tor u ∈ Rp where n, p and m are the number of states, outputs and inputs of
the state space system. The physical interpretation of inputs to an aerodynamic
model used in aeroelastic applications are variations of boundary conditions due
to surface motion or external disturbances. The outputs correspond to the vari-
ation in pressure distributions across the surfaces. The exact interpretation of
the states depends on the underlying numerical modelling technique. For poten-
tial flow methods as they are most commonly used in subsonic aero(servo)elastic
applications, the states can be associated to the unsteady interaction between
the wake and the lifting surfaces (also known as lag states). Models represent-
ing the unsteady aerodynamics of full aircraft configurations can be large and
costly to simulate. Techniques reducing the number of states are referred to as
model order reduction methods. All methods target the realisation of models
that reproduce the behaviour of interest as precisely as possible with a lower
number of states and equations. The fundamental model order reduction meth-
ods have their origin in the field of control engineering in the late last century
[16]. The methods forming the basis of this paper are the BT and the POD.
Both methods are projection based methods that reduce the space in which the
differential equations are solved by projection on a new set of basis vectors:

xr = Φrx (2)
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with the reduced state vector xr ∈ Rk<n and the reduction basis Φr ∈ Rk×n.
The resulting ROM is then given by:

ẋr = Ãxr + B̃u = Φ−1r AΦrxr + Φ−1r Bu

y = C̃xr + Du = CΦrxr + Du
(3)

In order to outline the basis for the present work, the following section
(2.1) presents a quick review of the concepts of BT and POD followed by the
introduction of the combined BPOD. In Section 2.2 the use of synthetic mode
shapes for the reduction of large aerodynamic systems used in aeroservoelastic
applications is proposed and three different types of synthetic mode shapes are
formulated for full aircraft configurations. A summary of the resulting combined
procedure is presented in Section 2.3.

2.1 Model Reduction by Balanced Proper Orthogonal Decomposi-
tion

Balanced Truncation The concept of balancing was initially developed by
Moore in the balanced truncation with the idea to reduce the state space onto a
subspace spanned by the most controllable and observable states [1]. Therefore,
Gramians are computed which can be used to quantify the contribution of the
individual states to the input-state and state-output behaviour. The controlla-
bility Gramian Wc used for the quantification of the input-state contribution
of a stable system is given by:

Wc =

∞∫
0

eAtBBT eA
T tdt (4)

An interpretation of Eq. 4 is that the controllability Gramian equals the
infinite integral of the outer product of impulse state responses for every input
to the system. The actual quantification is done by computing the Singular
Value Decomposition (SVD) of the Gramian:

Wc = UcΣcV
T
c (5)

where Σc contains the singular values σc on its diagonal (Σc = diag(σc,1...σc,n)
with σc,1 ≥ σc,2 ≥ ... ≥ σc,n) and Uc as well as Vc the corresponding left
and right-singular vectors as columns. The singular value σi then quantifies the
controllability of the state described by the i-th column of Uc.

The observability Gramian Wo for determination of the relative state-output
importance is given similarly:

Wo =

∞∫
0

eA
T tCTCeAtdt (6)

According to the principle of duality, the observability Gramian equals the
controllability Gramian of the adjoint ( .̄ ) or dual system whose state equation
is given by:

˙̄x = AT x̄ + CT ū (7)

with x̄ being the dual system state vector.
A system is in its balanced form when the resulting reduced states are equally

observable as controllable, i.e. the singular values of the Gramians coincide.
The transformation that balances the system is found by an eigenanalysis of
the product WcWo. When the system is in its balanced form, a reduced or-
der model is obtained by truncation of the least controllable and observable
states. For further information, the reader is referenced to [1], or to [17] for the
numerically more reliable Square Root Balanced Truncation.
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Usually, the Gramians are computed by solving the Lyapunov equation.
However, the algorithm used for the solution is computationally expensive, and
the effort grows cubically with the number of states [18]. Thus, for large sys-
tems, the standard balanced truncation is practically not feasible. In the past
decades, many methods have been developed with the aim to realise approxi-
mately balanced ROMs for such large-scale systems. Many of those methods
make use of simulation snapshots as they can be obtained for all kinds of under-
lying dynamical systems. One of those methods is the use of empirical Gramians
based on simulation data for the computation of the balancing transformation.
Assuming the empirical Gramians represent a good approximation of the exact
Gramians, the resulting truncated balanced realisation models are very close to
the models obtained by using exact Gramians. Moore already used time sam-
pled simulation data for the computation of the Gramians instead of a numerical
solution of the Lyapunov equation[1]. Lall et al. proposed to use this way of
Gramian estimation to reduce the dimension of complex, controlled non-linear
systems by balanced truncation [19]. For linear systems, the integral for the
computation of the controllability Gramian in Eq. 4 can be approximated by
the sum of the outer product of m state snapshots at equally spaced time steps
(1ts, 2ts, ...,mts):

Wc ≈
m∑
i=1

p∑
j=1

xi,jx
T
i,jts (8)

Herein, xi,j is the i-th snapshot of the state response to a unit Dirac impulse
at input j. The observability Gramian is similarily approximated by the help
of the adjoint system defined in Eq. 7:

Wo ≈
m∑
i=1

q∑
j=1

x̄i,jx̄
T
i,jts (9)

Here, x̄i,j denotes the i-th snapshot of the state response to a unit Dirac
impulse at input ūj of the adjoint system. With the obtained approximated
Gramians, first an aproximately balanced transformation is made, followed by
an truncation of the least controllable and observable states. The main drawback
of using empirical Gramians is that many simulation snapshots are needed for a
sufficiently high accuracy of the approximation. For aerodynamic systems which
usually have many inputs and outputs, the number of simulations required is
particularly high.

Proper Orthogonal Decompostion Especially in the area of fluid dynamic
simulation, the POD has proven itself in the past as an effective method for
model reduction. The original concept of the POD was presented by Pearson
as a method for finding the “best-fitting“ straight line or plane for 2D or 3D
point clouds [20]. With respect to large systems, one of the most important
advancements is the POD by the method of snapshots presented by Sirovich
[21]. The principal idea behind the POD is to perform a Galerkin projection of
the vector space onto a subspace spanned by orthonormal basis vectors so that
the approximation of a given set of simulation snapshots is optimal in a least
square sense [16]. Therefore, a set of m state snapshots at different time steps
resulting from simulations with the full order model is collected in the snapshot
matrix X:

X =
1

m
[x(t1), ... ,x(tm)] (10)

It can be shown that, in the finite-dimensional space, the solution for the op-
timal approximation are the eigenvectors of the correlation matrix XXT [22].
The largest eigenvalues correspond to the most suitable POD mode shapes re-
garding approximating the given dataset X. Hence, a reduced order model is
formed by using only the eigenvectors belonging to the k largest eigenvalues.
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The method of snapshots proposed by Sirovich makes use of the positive
semidefiniteness of the correlation matrix XXT [21]. When the number of snap-
shots m is smaller than the number of states n, the size of the eigenvalue problem
can be reduced from n× n to m×m by computing the eigenvalues of XTX.

The resulting m POD modeshapes ΦPOD = [φ1, ..., φm] are then found by:

φj =
1√
λj

Xvj , j = 1, ...,m (11)

where λ and v are the eigenvalues and eigenvectors of XTX.
As the resulting modes are optimal in approximating a given dataset, the

question remains if the same modes are suitable for the representation of the
system dynamics.

Balanced Proper Orthogonal Decompoistion As the POD is based on
snapshots of states, only the input-state behaviour is reflected in the resulting
model. When empirical Gramians are used for a BT, additional snapshots of the
impulse responses of the adjoint system have to be computed. This results in
a large number of simulations required, especially when the number of outputs
is large. To overcome these issues, Rowley suggested a combination of the BT
and the POD which will be outlined in the following[4].

In the BPOD, first the m state snapshots x obtained from p impulse response
calculations at time steps t1, ..., tm are stored in the matrix X ∈ Rn×pm together
with their appropriate quadrature coefficients δ1, ..., δm, which are equal to the
time interval between the individual snapshots (e.g. δi = ti − ti−1):

X = [x1,1

√
δ1, ... ,x1,m

√
δm, ... ,xp,m

√
δm] (12)

When the number of outputs is large, it is recommended to first project the
system output on POD modes generated from a dataset of input-output tra-
jectories. As the input-state snapshots X are already computed, multiplication
with the matrix C generates a set of input-output snapshots Y:

Y = CX (13)

The eigenvectors and eigenvalues of YTY are used to define the POD output
mode shapes ΦPOD,o as it is shown in Eq. 11. The number of POD modes used
for output projection h is given by the desired approximation error defined as:

εproj =

q∑
j=h+1

λj (14)

in which λ are the eigenvalues of YTY.
Subsequently the input vector of the adjoint system ū in Eq. 7 is projected

on the POD output modeshapes (ū = ΦPOD,oǔ):

˙̄x = AT x̄ + CTΦPOD,oǔ (15)

Now, impulse response snapshots of the transformed adjoint system are taken
at l time steps and stored in the matrix X̄ ∈ Rn×hl

X̄ = [x̄1,1

√
δ1, ... , x̄1,l

√
δl, ... , x̄h,l

√
δl] (16)

The transformation that approximately balances the system is then found
by an SVD of X̄TX:

X̄TX = UbΣbV
T
b (17)

Φbal ≈ Φbal,a = XVbΣ
−0.5
b (18)

Φ−1bal ≈ Φ−1bal,a = Σ−0.5b UT
b X̄T (19)
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The ROM is then found by using only the first k columns of Φbal,a and the
first k rows of Φbal,a. Compared to the simple use of empirical Gramians, the
method is especially useful when the number of states and outputs is large.
The computation of the POD mode shapes for output projection requires only
little extra computational effort as no additional impulse response simulations
are necessary. However, during the analyses run for this paper, it has been
observed that the matrices X and X̄ can get very large and the product X̄TX
may get prohibitively expensive when it comes to memory usage. In this case
and more specifically when pm > n or hl > n, it is more efficient to compute a
form of approximated Gramians by:

Wc ≈ XXT (20)

Wo ≈ X̄X̄T (21)

Similar to the empirical Gramians discussed earlier, the accuracy of the
Gramians strongly depends on the number of snapshots used in the impulse
response simulation. The accuracy of the approximated observability Gramian
additionally depends on the chosen projection error εproj used for the determi-
nation of POD modeshapes h used in the output projection (Eq. 14). With
the use of these approximated Gramians, the balanced transformation and the
reduced order model can be computed as described in the BT.

Contrary to the POD, the BPOD takes into account the input-state as well
as the state-output dynamics for the selection of states that are kept in the
reduced order model. In addition, it has been found that the BPOD shows
higher robustness with regard to preserving stability compared to the POD [23].
Compared to the use of empirical Gramians, the BPOD reduces the amount of
required impulse response simulations of the adjoint system by reducing the
number of outputs prior to the training data generation process.

2.2 Synthetic Mode Shapes for Snapshot Data Generation in Aeroser-
voelastic Applications

In aeroservoelastic applications, the aerodynamic model is responsible for cal-
culating distributed forces among the surfaces given the boundary conditions
imposed at the same surfaces by structural, flight dynamic and control surface
degrees of freedom. When the aerodynamic and structural models are initially
set up, the number of inputs to the aerodynamic model depends on the number
of stations at which the force and displacement transfer between the aerody-
namic and the structural model is facilitated. Using all possible stations as in-
puts for the aerodynamic model order reduction by the BPOD, a large number
of simulations needs to be carried out to estimate the Gramians. Transforming
the inputs to the aerodynamic model on generalised coordinates reduces the
number of inputs. Typically, the eigenmodes of the in vacuo structural model
are used for the generalised coordinate basis alongside with the control surface
modes for the given control surface layout. As the targeted application of the
proposed method is sizing type aeroservoelastic optimisation, generalised coor-
dinates in terms of structural mode shapes and the control surface layout are
unknown at the time of the generation of the reduced order model, i.e. before
the optimisation.

In this work, synthetic mode shapes are used for the reduction of the number
of inputs to the aerodynamic model. In the following, three different methods for
the synthetic mode shape generation for full aircraft configurations are proposed.
It is assumed that the surface on which the aerodynamic forces are computed
and the boundary conditions are imposed, is given as a spatially discretised
domain as is usual for finite difference, element or volume methods. For the
sake of simplicity, the following description is limited to surface representations
of the wings only, i.e. no fuselage aerodynamics are modelled.
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Figure 1: Location and
definition of the intro-
duced reference coordi-
nate directions used for
the formulation of the
synthetic mode shapes on
a lifting surface. The
spanwise direction η fol-
lows the local one -
quarter chord line and the
chordwise direction ξ is
placed along the primary
flightpath.

Figure 2: Example of
the resulting zones for a
division of the lifting sur-
face nz,ξ = 4 zones per
chord and nz,η = 20 zones
per reference span.

Synthetic mode shapes based on Subdivision The first method used in
this work is to divide each lifting surface into zones by spanwise as well as chord-
wise subdivision. To divide the lifting surfaces into zones, first, two reference
coordinate directions per lifting surface are defined as shown in Fig. 1. A span-
wise coordinate direction η is defined along the one-quarter chord line of each
lifting surface ranging from one tip (η = −1) to the other (η = 1) for symmetric
lifting surfaces and from the root (η = −1) to the tip (η = 1) for non-symmetric
lifting surfaces. The chordwise coordinate direction ξ is defined along the pri-
mary flight direction and ranges from the local leading edge (ξ = −1) to the
trailing edge (ξ = 1). The zones are then defined by dividers which are equally
spaced along the two defined directions. As an example, Fig. 2 shows the result-
ing subdivisions for nz,η = 20 zones per reference span as well as nz,ξ = 4 zones
per chord. For each zone, a synthetic mode shape is then defined by a vector
with zeros for the boundary condition points which are outside and ones for
the points which are inside the respective zone. Stacked horizontally, the mode
shapes form the synthetic modal basis for the lifting surface. For the full air-
craft configuration, the modal bases for each lifting surface are block-diagonally
stacked. Depending on the number of subdivisions chosen, the transformation
of the aerodynamic system results in a reduced number of inputs.

Gillebaart and De Breuker also used this approach to reduce the amount of
impulse response simulations required to carry out the BPOD for a panel-based
aerodynamic model. However, only one chordwise zone has been used while the
spanwise number was chosen to be the number of spanwise panels used in the
underlying aerodynamic full order model [7]. In this paper, the influence of the
number of zones used on the resulting accuracy of the reduced order model is
studied in Section 3..

Synthetic mode shapes based on Chebyshev Polynomials Another way
of generating synthetic mode shapes is the use of spatial weighting functions.
Ideally, the weighting functions form an orthogonal basis. One of the most
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Figure 3: Chebyshev
polynomials of the first
kind as a function of
η evaluated for various
orders j.
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prominent sets of orthogonal vectors are the Chebyshev polynomials of the first
kind as shown in Fig. 3. An explicit definition of the one-dimensional polyno-
mial in dependence of the order j is given as [24]:

Uj(η) =
(η +

√
η2 − 1)j + (η −

√
η2 − 1)j

2
(22)

Again the two reference coordinate directions defined in Fig. 1 are used to
formulate the mode shapes:

φc,(i−1)j+i(ξ, η) =Ui(ξ)Uj(η) (23)

with i = 0, ..., nc,ξ − 1 and j = 0, ..., nc,η − 1

For a typical wing geometry, the resulting synthetic mode shapes for various
orders are shown in Fig. 4. Again, the modes are horizontally stacked for each
wing and block-diagonally arranged for the full aircraft configuration.

Winter et al. used a similar description for the generation of mode shapes
[15]. However, in their formulation, the polynomials have been defined along
global coordinate directions. As a result, the polynomial boundaries lie outside
of the wings surface for tapered or swept wings. Hence, not the full weighting
functions are used, and consequently, higher order polynomials are required to
achieve the same distributions.

Synthetic mode shapes based on Radial Basis Functions The third set
of synthetic mode shapes used in this work is based on radial basis functions.
Here, the magnitude of the mode shapes depend on the distance to a centre node.
The underlying formulation used in this work has been described by Zhang et
al., however, adapted to be used for complex wing geometries [14]. First, the
nr,ξ chordwise and nr,η spanwise centre nodes are placed equidistantly along
each of the two reference coordinate directions defined in Fig. 1. The resulting
centre nodes form a mesh in total consisting of nr = nr,ξnr,η centre nodes. The
i-th RBF is defined in dependence of the spanwise reference coordinate η as:

Ri(η) = (1− dη)4(4dη + 1) (24)

Herein, dη denotes the distance to the respective centre node in spanwise direc-
tion η defined as:

dη = max(
|η − ηi|
rη

, 1) (25)

with ηi being the spanwise station of the i-th centre node. The radius r is a
function of a scaling factor f and the number of spanwise centre nodes:

rη =
f

nr,η
(26)
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The resulting RBFs of nr = 3 centre nodes are shown in Fig. 5 for different
scaling factors f . Similarly, the RBF is defined in chordwise direction. One
mode shape per centre node is then calculated by:

φr,i =Ri(ξ)Ri(η) (27)

with i = 1, ..., nr,ξnr,η

An example mode shape is shown in Fig. 6 alongside with the positions of
the centre nodes for this case. Again, the mode shapes are stacked horizontally
to form the transformation basis as for the other two methods described.

2.3 Resulting Process for Aerodynamic Model Order Reduction

The proposed process to create the reduced order aerodynamic model is sum-
marised in the following steps:

1. Create a set of synthetic mode shapes Φsyn for the surfaces on which the
aerodynamic model inputs are defined.

2. Project the input space of the aerodynamic model from Eq. 1 onto the
chosen set of synthetic mode shapes to obtain the transformed ( .̂ ) system
with the input vector û:
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Figure 6: Example of a
synthetic mode shape for
a typical wing geometry
based on radial basis func-
tions alongside with the
respective centre nodes. 0 1φ [-]

ẋ = Ax + B̂û= Ax + BΦsynû

y = Cx + D̂û= Cx + DΦsynû
(28)

3. Calculate the transformation Φbal,a and Φ−1bal,a that approximately bal-
ances the transformed system using the BPOD described in Sec. 2.1.

4. Select a subset of the balancing transformation to construct the reduction
basis Φr and Φ−1r by keeping the firt k columns of Φbal,a and the first k
rows of Φ−1bal,a.

5. Transform the state space of the aerodynamic model with the reduction
basis to obtain the k-th order ROM using Eq. 3.

Note, that no information concerning the structural or control surface prop-
erties is required for the generation of the aerodynamic ROM. In the following,
the aerodynamic ROMs resulting from the proposed process are integrated with
the structural and flight dynamic equations of motion and subsequently tested
for their accuracy in aero(servo)elastic analyses. The synthetic mode shapes
are only required for reducing the aerodynamic model and are not used in the
integration of the aeroelastic model or the aero(servo)elastic analyses shown in
the following.

3. Application and Results

In this section, first, the example case is introduced by describing the aeroser-
voelastic full order model with the structural and control surface variations used
for benchmarking the resulting reduced order models (see Section 3.1). In Sec-
tion 3.2, the aeroelastic analyses are introduced and appropriate error measures
are defined to quantify the accuracy of the reduced order models in an objective
comparison. The application of the BPOD without previous input transforma-
tion is described in Section 3.3. The main results produced with the proposed
combination of the BPOD with input projection on synthetic mode shapes are
presented in Section 3.4.

3.1 Model Description

As an illustrative example, a twin-engine tube wing aircraft configuration as
depicted in Fig. 7a is examined. Since the resulting ROMs are to be used wit
hin aeroservoelastic optimisation, they must be robust to structural and control
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(c)

Figure 7: (a) The twin-
engine tube wing air-
craft configuration used
as example. (b) The
nodes representing the
stick model used for the
structural representation.
(c) Panel mesh used for
the generation of the full
order unsteady aerody-
namic model.
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Table 1: In vacuo struc-
tural mode frequencies of
both structural models
without the rigid body
modes.

Frequency [Hz]
Mode Model A Model B

1 1.16 0.72
2 2.24 1.75
3 3.72 2.60
4 4.04 2.91
5 4.08 3.45
6 6.36 4.33
7 7.50 6.19
8 8.35 7.89
9 10.99 7.95
10 11.79 8.25

surface parameter variations. Therefore, three control surfaces are defined at
the tip of the main wing, see Fig. 8), with chordwise lengths of 15, 30 and 100
% of the local chord and spanwise lengths of 30, 15 and 10 % of the span of the
main wing.

The aerodynamic model is based on a continuous time state space formula-
tion of the UVLM [25], [26]. The panel model consists of 2180 surface bound
panels, see Fig. 7c, and 8580 wake panels. The resulting linear state-space model
has 2180 inputs for the boundary conditions imposed at the panels, 8580 wake
vorticity states and 2180 outputs for the pressures on the surface-bound panels.
Deflection of the control surfaces is facilitated by rotation of the normal vectors
in the area of the control surface. By appropriate weighting, the boundaries of
the control surface do not need to coincide with the panels and can be moved
without regenerating the panel mesh.

A practical mean axis formulation is used for the formulation of the equations
of motion that introduce the flight dynamic rigid body degrees of freedom [27].
The structural model is based on Euler Bernoulli beam elements placed at the
elastic axis of the wings and the fuselage. The nodes representing the structural
beam model are shown in Fig. 7b. Two different structural models are defined
for the aircraft configuration to evaluate the accuracy of the resulting ROMs
in the presence of structural modifications. As shown in Fig. 9, Model A has
cubic mass and stiffness distributions and for Model B, linear distributions are
used for the wing and tail structure. Mass and stiffness along the fuselage are
assumed to be constant for both models. These distributions were solely chosen
to obtain different eigenmodes and are not comparable to any realistic designs.
Large system masses (engine and landing gear) are modelled as concentrated
masses with rigid lever arms. A total of 20 structural mode shapes is retained
in the aeroelastic analyses. The frequencies of the first ten in vacuo structural
modes are shown in Table 1 for both structural models.

3.2 Analyses and Accuracy Measures

The targeted sizing-type optimisation problem consists of objective and con-
straint functions that depend on the results of analyses carried out using the
integrated aeroservoelastic model. In addition to flutter point and gust loads
assessment, aeroservoelastic analyses include the analysis of dynamics involved
by control surface motion. In the following, these analyses are described in more
detail, and error measures for each aeroelastic analysis are derived which will
be used for the evaluation of the accuracy of the resulting ROMs.

Flutter Point With both structural models, the testcase shows a flutter in-
stability at subsonic speeds. A flutter analysis is performed for a constant Mach
number of Ma = 0.5 at sea level. Frequency ω and damping ζ of the first four
structural modes over the velocity V are shown in Fig. 10 for model A and in
Fig. 11 for model B.

Vol. 6, No. 1, pp. 43–72 ASDJournal



S. Binder, A. Wildschek and R. De Breuker
∣∣∣ 57

150 200 250 300 350
0

1

2

3

4

Velocity V [m/s]

F
re

q
u

en
cy

ω
[H

z]

1st Sym. Bending
1st Antisym. Bending
1st Sym. Torsion
1st Antisym. Torsion
Flutter Boundary

150 200 250 300 350
−0.2

0

0.2

0.4

0.6

Velocity V [m/s]

D
am

p
in

g
ζ

[-
]

Figure 10: Flutter anal-
ysis results of the inte-
grated aeroelastic model
using structural Model A.
The flutter boundary at a
speed of V = 317.37 m/s
is highlited.
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Figure 11: Flutter anal-
ysis results of the inte-
grated aeroelastic model
using structural Model B.
The flutter boundary at a
speed of V = 258.55 m/s
is highlited.
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The ROMs resulting from the proposed procedure shall be able to predict
the flutter point (i.e. flutter speed and frequency) accurately for both structural
models. In this work, the relative error in flutter speed Vf and frequency ωf
between every ROM ( .̃ ) and the unreduced, full order model is determined as:

εVf
=
Ṽf
Vf
− 1 (29)

εωf
=
ω̃f
ωf
− 1 (30)

The test case used shows a form of bending-torsion flutter with a high damping
gradient near the flutter point. For flutter mechanisms in which the damping
gradient is significantly lower, the flutter speed may vary strongly with small
changes in the aeroelastic behaviour. For such flutter mechanisms, an error
definition based on the damping of the aeroelastic modes of interest at a given
speed should be used.

Gust Loads In this work, the root-mean-square (RMS) values of the dynamic
response to a gust signal generated with the one dimensional von Kármán tur-
bulence spectrum are used as a measure of the ROMs ability to predict gust
loads. The parameters of the gust model are chosen according to the certifica-
tion specifications for large aeroplanes [28]. A turbulence length scale of 2500 ft
(762 m) is used, and the chosen flight condition corresponds to a Mach number
of Ma = 0.5 at sea level which results in a turbulence intensity of 27.43 m/s.
Gust zones are defined dividing the entire aircraft into 30 segments along the
primary flight path to account for the time delay required as the vehicle passes
through the gust. The error in the gust load prediction is defined as the relative
difference in the RMS of the wing root bending moment Mx,wr between the
ROM ( .̃ ) and the full order model:

εGust =
rms(M̃x,wr)

rms(Mx,wr)
− 1 (31)

Control Surface Transfer Function As the intended application is an
aeroservoelastic optimisation, the ROM used for the aerodynamics needs to
accurately reproduce the influence of control surface motion on structural de-
flection and loads. Here, the influence is characterised by the transfer function
from a symmetric control surface rotation input to an acceleration of the wing
tip. The influence of actuation and sensor dynamics is not included in this trans-
fer function. Error norms, such as the H2 norm, have been derived to measure
the deviation of a given transfer function from a desired transfer function in
the frequency domain. A frequency-limited formulation of the H2 norm is used
which is given for a dynamical system G as [29]:

‖G‖H2,ω,j
=
( 1

π

∫ ω2

ω1

|Hj(ν)|2dν
) 1

2

(32)

herein, H denotes the complex-valued transfer function from the control
surface input j to the vertical tip acceleration. The frequencies ω1 and ω2

usually result from the targeted aeroelastic control law as well as the sensor and
actuator bandwidth. The frequencies considered in this paper range from 1 to
250 rad/s. The transfer function (from the rotational input of control surface
2 to the wing tip vertical acceleration) of the aeroelastic model with the full
aerodynamic model is shown in Fig. 12 in the frequency range considered for
the error computation. It is noted, that for accurate reduced order modelling
for lower frequencies of interest, the singular perturbation technique should be
favoured over a simple truncation as used in this work. For more information
on the singular perturbation technique, the reader is referred to [30].
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Figure 12: Transfer
function from the rota-
tional input of control
surface 2 to the wing tip
vertical acceleration. The
transfer function is shown
for both structural model
variants and in the fre-
quency range considered
in the error computation.

To quantify the deviation between the transfer function resulting from the
ROM G̃ and the full order model transfer function G, the control surface transfer
function error εCS is calculated by:

εCS =
‖G− G̃‖H2,ω

‖G‖H2,ω
(33)

3.3 BPOD without Input Projection

Before applying the proposed combination of the BPOD with input projection
on synthetic modes, a model reduction with the BPOD alone is presented in this
section. Therefore all available inputs are used for the generation of the train-
ing data. With the presented test case, this results in 2850 input-state impulse
response simulations required for the estimation of the controllability Gramian.
The resulting state snapshots contain all possible characteristics that can be
excited by the aerodynamic model inputs. To ensure that the subsequently cal-
culated base of the POD modes contains all the relevant state characteristics,
the projection error given in Eq. 14 is limited to εproj < 10−9. The approx-
imately balancing transformation is computed with the approximation of the
observability Gramian. In the following, aerodynamic ROMs are realised for
various truncated model orders k and afterwards integrated with the structural
and flight dynamic equations. These models are then used to perform the aeroe-
lastic analyses described in the previous section. The calculation of the flutter
point and gust loads results in two errors per structural model variant. Together
with the three errors in the control surface transfer functions of the three control
surfaces, this results in ve errors for each structural model variant or in a total
of ten errors for both structural models investigated. The maximum among
these errors εmax over the truncated model order k is shown in Fig. 13. As usual
for the balanced truncation, the maximum error decreases rapidly with increas-
ing model order k. However, the maximum error is not necessarily decreasing
monotonically. Instead, oscillations are possible, and therefore a monotonic de-
creasing envelope is calculated to improve the readability of all following plots.
At low truncated model orders (less than k = 50), the aerodynamic ROMs do
not contain enough dominant flow characteristics leading to high maximum er-
rors in the aeroelastic analyses. With increasing truncated model order, the
error decreases to εmax = 4 · 10−4 corresponding to the maximum achievable
accuracy.

It is noted that contrary to a balanced truncation using exact gramians, the
BPOD cannot yield the exact results even if the full order balancing transforma-
tion is used. The error can be explained by its three sources. First, the data used
in the BPOD is based on discrete snapshots of continuous time signals. Second,
the impulse responses are calculated for a finite time horizon. And Third, the
inputs of the adjoint system are projected on a set of POD modes before the
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Figure 13: The maxi-
mum error (among the ten
errors in the aeroelastic
analyses) of the models
resulting from a BPOD
without input projection
over the truncated model
order. The monotonic de-
creasing envelope repre-
sents the upper expected
error bound of the ROM.
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Table 2: Maximum
achievable accuracy and
minimum model order
required to achieve the
desired accuracy of 0.1%
in the different analyses
and for the different
structural models. The
minimum achievable
accuracy as well as the
highest required mini-
mum order are highlited.
The models result from
a BPOD without input
projection.

Structural
Model

Analysis
Achievable
Accuracy

Required Order
(ε < 10−3)

A

Flutter Speed 1.46 · 10−6 340
Flutter Frequency 7.86 · 10−8 470
Gust Loads 1.46 · 10−5 460

Transfer Func.
Ctrl. Surf. 1 2.33 · 10−6 340
Ctrl. Surf. 2 2.39 · 10−6 340
Ctrl. Surf. 3 2.18 · 10−6 390

B

Flutter Speed 1.14 · 10−6 400
Flutter Frequency 1.88 · 10−6 470
Gust Loads 4.01 · 10−4 370

Transfer Func.
Ctrl. Surf. 1 5.81 · 10−6 470
Ctrl. Surf. 2 9.22 · 10−6 470
Ctrl. Surf. 3 9.69 · 10−6 470

determination of the observability Gramain. Consequently, if higher accuracy is
desired, one may take more snapshots, increase the simulation time horizon and
limit the output projection error εproj to lower values. The maximum achievable
accuracy is sufficient for the studies in the present paper.

The error in the different analyses in dependency of the truncated model or-
der k is shown in Fig. 14. Depending on the truncated model order, the highest
error is caused by different analyses. While the highest error for low truncated
model orders is observed in the flutter frequency, the maximum achievable ac-
curacy is dominated by the gust load analysis. Without further studies, it is not
evident whether the error is caused by the number of snapshots or by the end
time of the impulse response simulations. The maximum achievable accuracies
in all analyses with both structural models and all three control surfaces are
listed in Table 2 together with the truncated model order required to achieve a
given desired accuracy of ε < 10−3. For both structural models, the maximum
achievable accuracy is driven by the gust load analysis. The required model or-
der to achieve the desired accuracy is driven by the analysis of flutter frequency
and control surface transfer functions both requiring a model order of k = 470.
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Figure 14: The analysis-
specific error of the mod-
els resulting from a BPOD
without input projection
over the truncated model
order.

3.4 BPOD with Input Projection on Synthetic Modes

The idea of the proposed method is to capture more relevant flow characteris-
tics in less balancing modes by an input projection on a suitable set of synthetic
modes before the BPOD. Thereby, the required model order to achieve the de-
sired accuracy is minimised compared to the case without prior input projection.

For this, first, the optimal number of synthetic mode shapes is determined
for each type of mode shapes separately in Section 3.4.1. In Section 3.4.2 the
different types of mode shapes are then compared to each other concerning their
suitability for the use in aerodynamic model order reduction. The results are
also compared to the results without input transformation shown in the previous
section.

3.4.1 The Optimal Number of Synthetic Modes

It is evident that with a larger number of orthogonal synthetic mode shapes,
a closer approximation of the actual mode shapes can be obtained by linear
combination. However, when more characteristics are included in the snapshot
data used for the BPOD, the resulting singular values show a lower rate of
decay, and thus less energy will be concentrated in or captured by the selected
subset of balancing modes. As a result, for higher accuracy, larger subsets must
be taken, and the resulting required model order is higher. Besides, a larger
number of synthetic mode shapes results in more simulations that must be
carried out leading to a higher computational effort required during the ROM
generation phase. At the same time, a certain number of synthetic mode shapes
is required to capture a sufficient variety of flow characteristics in the training
data. The resulting reduced order model can only reflect characteristics which
are available in the training data. In the following, ROMs are generated with
varying numbers of synthetic mode shapes used in the process of snapshot data
collection. The goal is then to find the right amount of synthetic modes needed
to achieve a given desired accuracy in the aeroelastic analyses (εmax < 10−3)
while keeping the computational effort for the model order generation and the
required model order as low as possible.
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Figure 15: The maxi-
mum error in the aeroelas-
tic analyses over the trun-
cated model order for var-
ious number of zones per
reference span nz,η at a
fixed number of chordwise
zones of nz,ξ = 2.
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Input Projection on Synthetic Modes based on Zonal Aggregation
The maximum error over the truncated model order for the various number of
zones per reference span nz,η at a fixed number of chordwise zones of nz,ξ = 2
is shown in Fig. 15. As expected, the maximum error decreases rapidly with
increasing truncated model order, i.e. the number of balancing modes kept in the
transformation. The cases differ mainly in the maximum achievable accuracy
within the analysed range of truncated model orders. More zones and thus more
synthetic mode shapes result in a bigger and more complex set of data which
contains a broader variety of state snapshots and therefore the rate at which
the maximum error decreases, i.e. the accuracy per model order, is lower. It is
furthermore observed, that if the number of synthetic mode shapes is too small,
the captured characteristics are insufficient to achieve the desired accuracy.

For the given desired accuracy of εmax < 0.1%, both the cases nz,η = 14 and
nz,η = 15 can be seen as optimal as both require the lowest truncated model to
achieve the desired accuracy. However, a number of zones per reference span of
nz,η = 14 is chosen as a less computational effort is required for the generation
of the ROM.

A similar behaviour can be observed when varying the chordwise number of
zones nz,ξ at a fixed number of spanwise zones of nz,η = 14. The resulting maxi-
mum error in the aeroelastic analyses over the truncated model order is shown in
Fig. 16. Again, the case is identified which requires the lowest truncated model
order to achieve the desired accuracy. With the additional constraint of keeping
the number of synthetic modes as low as possible, a number of chordwise zones
of nz,ξ = 2 is identified as the most favourable case.

Input Projection on Synthetic Modes based on Chebyshev Polynomi-
als The optimal number of Chebyshev modes is determined in the same way.
The maximum error over the truncated model order for the various number of
spanwise and chordwise Chebyshev polynomials is shown in Fig. 17 and Fig. 18.
A similar trend is observed as in finding the optimal number of zones, and the
optimal setup is chosen to be nc,η = 10 and nc,ξ = 4.

Input Projection on Synthetic Modes based on Radial Basis Functions
Besides the number of RBF centre nodes, the formulation used for the generation
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Figure 16: The maxi-
mum error in the aeroelas-
tic analyses over the trun-
cated model order for var-
ious number of chordwise
zones nz,ξ at a fixed num-
ber of zones per reference
span of nz,η = 14.
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Figure 17: The maxi-
mum error in the aeroe-
lastic analyses over the
truncated model order for
various number of Cheby-
shev polynomials per ref-
erence span nc,η at a
fixed number of chordwise
Chebyshev polynomials of
nc,ξ = 4.
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Figure 18: The maxi-
mum error in the aeroelas-
tic analyses over the trun-
cated model order for var-
ious number of chordwise
Chebyshev polynomials of
nc,ξ at a fixed number
of Chebyshev polynomi-
als per reference span of
nc,η = 10.
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Figure 19: The maxi-
mum error in the aeroelas-
tic analyses over the trun-
cated model order for var-
ious radius scaling factors
f at a fixed number of
centre nodes per reference
span of nr,η = 10, and at a
fixed number of chordwise
centre nodes of nr,ξ = 4.
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Figure 20: The maxi-
mum error in the aeroe-
lastic analyses over the
truncated model order for
various number of centre
nodes per reference span
nr,η at a fixed number of
chordwise centre nodes of
nr,ξ = 3 and a fixed radius
scaling factor of f = 14.
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Figure 21: The maxi-
mum error in the aeroe-
lastic analyses over the
truncated model order for
various number of chord-
wise centre nodes nr,ξ at
a fixed number of centre
nodes per reference span
of nr,η = 18 and a fixed
radius scaling factor of
f = 14.
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Figure 22: The resulting
maximum error over the
truncated model order for
the different types of syn-
thetic mode shapes used
and a case without input
transformation.
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of RBF modes requires the definition of the radius scaling factor f in Eq. 26.
The maximum error over the truncated model order for different radius scaling
factors is shown in Fig. 19. Here, both the spanwise as well as the chordwise
number of RBF centre nodes are fixed. Similar to the previously described
way of determining the optimal number of synthetic mode shapes, the optimum
radius scaling factor is found by identifying for which radius scaling factor f
the lowest truncated model order is required. The maximum error over the
truncated model order for the various number of spanwise and chordwise RBF
centre nodes is shown in Fig. 20 and Fig. 21. The optimal setup is chosen to
be nr,η = 18 spanwise RBF centre nodes, nr,ξ = 3 chordwise RBF centre nodes
and a radius scaling factor of f = 14.

3.4.2 The Optimal Type of Synthetic Modeshapes

The individually chosen parameters for the synthetic mode shapes are optimal in
terms of the compactness of the resulting ROMs for the given desired accuracy.
In the following, the different sets are compared to each other to find the most
suitable type of synthetic modes.

Accuracy per Order The resulting maximum error over the truncated model
order is shown in Fig. 22 for the different types of synthetic mode shapes used.
For comparison, results are also shown in which the balancing transformation
is determined without prior input transformation as presented in Section 3.3.
It can be immediately seen that with an input projection by each of the types
of synthetic mode shapes, models can be established showing a higher accu-
racy per order in the analysed range of truncated model orders compared to
the method without prior input transformation. Among the three methods em-
ploying synthetic mode shapes, the use of RBF modes shows the highest rate
of decrease in the maximum error. Furthermore, the models created by using
RBF modes show fewer oscillations in the error which can be seen by the fact
that the monotonically decreasing envelope has fewer areas in which the error
is constant over a range of truncated model orders. This shows that synthetic
mode shapes based on RBFs are less sensitive to the choice of the truncated
model order.

Vol. 6, No. 1, pp. 43–72 ASDJournal



S. Binder, A. Wildschek and R. De Breuker
∣∣∣ 67

S
tr

u
ct

u
ra

l
M

o
d

el
A

n
al

y
si

s
N

o
In

p
u

t
P

ro
je

ct
io

n
Z

o
n

a
l

M
o
d

es
C

h
eb

y
sh

ev
M

o
d

es
R

B
F

M
o
d

es

A

F
lu

tt
er

S
p

ee
d

34
0

9
0

5
0

6
0

F
lu

tt
er

F
re

q
u

en
cy

4
7
0

1
4
0

1
0
0

7
0

G
u

st
L

oa
d

s
46

0
1
6
0

8
0

7
0

T
ra

n
sf

er
F

u
n

c.
C

tr
l.

S
u

rf
.

1
34

0
1
2
0

9
0

8
0

C
tr

l.
S

u
rf

.
2

34
0

1
4
0

1
3
0

1
0
0

C
tr

l.
S

u
rf

.
3

39
0

1
5
0

1
0
0

1
1
0

B

F
lu

tt
er

S
p

ee
d

40
0

1
2
0

8
0

6
0

F
lu

tt
er

F
re

q
u

en
cy

4
7
0

1
6
0

7
0

1
0
0

G
u

st
L

oa
d

s
37

0
1
2
0

8
0

7
0

T
ra

n
sf

er
F

u
n

c.
C

tr
l.

S
u

rf
.

1
4
7
0

1
4
0

1
3
0

1
0
0

C
tr

l.
S

u
rf

.
2

4
7
0

1
5
0

1
3
0

1
1
0

C
tr

l.
S

u
rf

.
3

4
7
0

1
5
0

1
1
0

1
1
0

M
a
x
im

u
m

4
7
0

1
6
0

(-
6
6
%

)
1
3
0

(-
7
2
%

)
1
1
0

(-
7
7
%

) Table 3: Comparison
of the required trun-
cated model order in
the different aeroelastic
analyses for the different
types of synthetic mode
shapes used for input
transformation and the
case without input trans-
formation. The highest
required model order for
each type is highlighted
indicating the minimum
required order to obtain
εmax < 10−3.
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Table 4: Number of re-
quired impulse response
simulations for the dif-
ferent types of synthetic
mode shapes used for in-
put transformation and
the case without input
transformation.

No Input
Transformation

Zonal
Modes

Chebyshev
Modes

RBF
Modes

nsim, primal 2180 52 72 96
nsim, dual 391 64 66 53
nsim, total 2571 116 (-95%) 138 (-95%) 149 (-94%)

The model orders required to achieve the desired accuracy in the different
aeroelastic analyses are summarised in Table 3. The order required to achieve
the desired accuracy in all analyses ranges from 110 to 160 for the different
types of synthetic mode shapes used. Compared to the case without input
transformation, this corresponds to a reduction in the required model order
of 66-77%. Depending on the type of synthetic modes, the required order is
driven by different analyses. Using zonal modes, gust loads and flutter analysis
(depending on the structural model) drive the required model order. When
using modes based on Chebyshev polynomials or RBF functions, the required
order is determined by the analysis of the control surface transfer functions.

Putting the results in relation to the unreduced, full order model, the BPOD
results in a significant total reduction of the states ranging from 98.1% combined
with zonal modes to 98.7% combined with RBF modes while the maximum error
in the aeroelastic analyses being less than 0.1% in the presence of significant
structural and control surface parameter variations.

Computational Effort Not only the accuracy per order of the ROM can
be improved, but also the computational effort required for the generation of
the balancing transformation can be reduced using synthetic mode shapes. In
Table 4, the number of required impulse response simulations is listed for the
different synthetic mode shapes used in their optimal setups. The reduction in
required impulse response simulations is comparable for all the methods and
lies in the range of 95% compared to the process without input transformation.
Among the methods that use synthetic modes, the most significant reduction
in computational effort can be achieved with zonal modes. Compared to RBF
modes, about 22% fewer simulations are needed. Depending on the number of
analyses carried out with the reduced order model and the complexity of the
full order model, the choice of the type of synthetic mode shapes has to be done
based on the available generation time and the desired accuracy of the reduced
order model.

Correlation of the Results to the Modal Assurance Criterion The
MAC is widely used to quantify the similarity of two mode shapes. The MAC
value between two mode shapes φ1 and φ2 is given by [31]:

MAC =
|φT1 φ2|2

(φT1 φ1)(φT2 φ2)
(34)

The more correlation, the higher the MAC value. A MAC value of 1 indicates
full similarity, i.e. φ1 and φ2 are the same vector except for a possible scaling.

To use the MAC values as an approximation quantification, first, the approx-
imated mode shapes are calculated with the respective set of synthetic modes by
finding the linear combination. In Fig. 23 the resulting mean MAC Values are
depicted for the different synthetic modal bases used in the prior analyses (i.e.
in their optimal setup). While all types of synthetic mode shapes successfully
approximate the rigid body modes, the RBF modes outperform the other meth-
ods in approximating the structural mode shapes of both structural models.
This correlates to the result of the previous section where the models created
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Figure 23: Mean MAC
values between the ac-
tual mode shapes and the
approximations resulting
from the different sets of
synthetic mode shapes in
their optimal setup for
model order reduction.

using RBF modes produce the highest accuracy per order. However, consid-
ering the MAC values of the control surface modes, no correlation is observed
to the results shown in Table 3. Although the approximation of the control
surface modes by RBF modes is not as accurate as by Chebyshev polynomials,
the ROM produced using RBF modes still shows the highest accuracy per order
in the control surface transfer functions. This becomes even clearer in the case
of zonal modes. The MAC analysis shows a relatively poor consistency of the
control surface modes compared to the structural and flight dynamic modes. In
turn, the accuracy per order of the control surface transfer functions is compa-
rable to the accuracy per order in the other aeroelastic analyses. In general, it
can be said that evaluating the suitability of synthetic modes for the purpose of
model reduction by the MAC value can be misleading and should be avoided.

4. Conclusion

In this work, a procedure for the generation of ROMs has been outlined which
is suitable for the use in aeroservoelastic optimisation. The concepts of BPOD
and synthetic mode shapes are combined to facilitate ROMs which are robust
to structural and control surface layout variations. Three different types of
synthetic mode shapes based on zonal subdivision, Chebyshev polynomials and
RBFs have been formulated for full aircraft configurations. The resulting algo-
rithm has been applied to an aeroservoelastic model of an exemplary aircraft
configuration. Besides an analysis of the optimal number of synthetic mode
shapes, the different types have been compared to each other concerning their
accuracy in aeroservoelastic analyses, computational effort during the genera-
tion of the ROM and resulting MAC values.

It was shown that all methods are improving the accuracy per order of
the resulting ROM compared to a BPOD without the use of synthetic mode
shapes. Next, the influence of the number of synthetic modes used for the ROM
generation was examined, with the result that the number of synthetic modes
has a considerable impact on the achievable accuracy and the accuracy per
order of the resulting ROM. The maximum error in the aeroelastic investigations
(stability, gust loads and control surface transfer functions) caused by the model
order reduction in the presence of structural and control surface layout variations
has been constrained to be less than 0.1%. With this requirement, the optimal
setup was determined for each type of mode shapes individually.

The use of RBF based mode shapes in combination with the BPOD resulted
in the highest reduction of the states of 98.7% compared to the full order model
and 77% compared to a BPOD without pror input transformation. To approxi-
mate the input space to the aerodynamic model, 96 RBF based synthetic mode
shapes have been used. These mode shapes have been generated on a grid of
ten points per reference span and four points per reference chord. The com-
putational effort required for the generation of the ROM is reduced by 94%
compared to the BPOD without input transformation. This generation time
can be further reduced when using synthetic mode shapes based on zonal sub-
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division. The lowest required order for the desired accuracy was achieved with
14 zones per reference span and two zones per reference chord resulting in a
total of 52 synthetic mode shapes used to approximate the input space of the
aerodynamic model. The optimal type and number of synthetic mode shapes
is thus depending on the envisaged number of simulations carried out with the
reduced order model and the available time required for its generation.

The presented method was applied in the reduction of a linear, incompress-
ible aerodynamic model based on the unsteady vortex lattice method. Analysing
the capabilities of the method in reducing higher order aerodynamic models cap-
turing complex flow effects (e.g. transonic effects) is subject to further research.
However, since the excitation of the aerodynamic model is purely based on the
structural and control surface motion, it is believed that the synthetic mode in-
put projection still enhances the results and efficiency of model order reduction
techniques based on simulation snapshot data.

References

[1] B. Moore, “Principal component analysis in linear systems: Controlla-
bility, observability, and model reduction,” IEEE Transactions on Auto-
matic Control, vol. 26, no. 1, 1981. https://doi.org/10.1109/TAC.1981.
1102568.

[2] E. Livne, “Integrated aeroservoelastic optimization: Status and direction,”
Journal of Aircraft, vol. 36, no. 1, pp. 122–145, 1999. https://doi.org/

10.2514/2.2419.

[3] G. Berkooz, P. Holmes, and J. L. Lumley, “The proper orthogonal de-
composition in the analysis of turbulent flows,” Annual Review of Fluid
Mechanics, vol. 25, no. 1, 1993. https://doi.org/10.1146/annurev.fl.
25.010193.002543.

[4] C. W. Rowley, “Model reduction for fluids using balanced proper or-
thogonal decomposition,” International Journal of Bifurcation and Chaos,
vol. 15, no. 03, pp. 997–1013, 2005. https://doi.org/10.1142/

S0218127405012429.

[5] Z. Ma, S. Ahuja, and C. W. Rowley, “Reduced order models for con-
trol of fluids using the eigensystem realization algorithm,” Theoretical
and Computational Fluid Dynamics, vol. 25, no. 1-4, pp. 233–247, 2011.
https://doi.org/10.1007/s00162-010-0184-8.

[6] T. B. Thanh and K. Willcox, “Model reduction for large-scale cfd applica-
tions using balanced proper orthogonal decomposition,” 17th AIAA Com-
putational Fluid Dynamics Conference, 2005. https://doi.org/10.2514/
6.2005-4617.

[7] D. Rajpal, E. Gillebaart, and R. De Breuker, “Preliminary aeroelastic de-
sign of composite wings subjected to critical gust loads,” Aerospace Science
and Technology, no. 85, pp. 96–112, 2019. https://doi.org/10.1016/j.

ast.2018.11.051.

[8] C. L. Fenwick, D. P. Jones, and A. L. Gaitonde, “Consideration of re-
duced order model interpolation for aeroelastic design using structural mod-
ification,” 18th AIAA Computational Fluid Dynamics Conference, 2007.
https://doi.org/10.2514/6.2007-3831.

[9] M. Karpel, “Multidisciplinary optimization of aeroservoelastic systems us-
ing reduced-size models,” Journal of Aircraft, vol. 29, no. 5, pp. 939–946,
1992. https://doi.org/10.2514/3.46266.

Vol. 6, No. 1, pp. 43–72 ASDJournal

https://doi.org/10.1109/TAC.1981.1102568
https://doi.org/10.1109/TAC.1981.1102568
https://doi.org/10.2514/2.2419
https://doi.org/10.2514/2.2419
https://doi.org/10.1146/annurev.fl.25.010193.002543
https://doi.org/10.1146/annurev.fl.25.010193.002543
https://doi.org/10.1142/S0218127405012429
https://doi.org/10.1142/S0218127405012429
https://doi.org/10.1007/s00162-010-0184-8
https://doi.org/10.2514/6.2005-4617 
https://doi.org/10.2514/6.2005-4617 
https://doi.org/10.1016/j.ast.2018.11.051
https://doi.org/10.1016/j.ast.2018.11.051
https://doi.org/10.2514/6.2007-3831
https://doi.org/10.2514/3.46266


S. Binder, A. Wildschek and R. De Breuker
∣∣∣ 71

[10] M. Karpel and D. Raveh, “Fictitious mass element in structural dynamics,”
AIAA Journal, vol. 34, no. 3, pp. 607–613, 1996. https://doi.org/10.

2514/3.13111.

[11] M. Karpel, “Efficient vibration mode analysis of aircraft with multiple ex-
ternalstore configurations,” Journal of Aircraft, vol. 25, no. 8, pp. 747–751,
1988. https://doi.org/10.2514/3.45653.

[12] M. Karpel and B. Moulin, “Models for aeroservoelastic analysis with smart
structures,” Journal of Aircraft, vol. 41, no. 2, pp. 314–321, 2004. https:

//doi.org/10.2514/3.20514.

[13] R. Voss, L. Tichy, and R. Thormann, “A rom based flutter prediction
process and its validation with a new reference model,” International Forum
of Aeroelasticity and Structural Dynamics, 2011.

[14] W. Zhang, K. Chen, and Z. Ye, “Unsteady aerodynamic reduced-order
modeling of an aeroelastic wing using arbitrary mode shapes,” Journal of
Fluids and Structures, vol. 58, pp. 254–270, 2015. https://doi.org/10.

1016/j.jfluidstructs.2015.07.007.

[15] M. Winter, F. M. Heckmeier, and C. Breitsamter, “Cfd-based aeroelas-
tic reduced-order modeling robust to structural parameter variations,”
Aerospace Science and Technology, vol. 67, pp. 13–30, 2017. https:

//doi.org/10.1016/j.ast.2017.03.030.

[16] W. H. A. Schilders, H. Van Der Vorst, and J. Rommes, Model Order
Reduction: Theory, Research Aspects and Applications. Springer, 2008.
https://doi.org/10.1007/978-3-540-78841-6.

[17] M. G. Safonov and R. Y. Chiang, “A schur method for balanced-truncation
model reduction,” IEEE Transactions on Automatic Control, vol. 34, no. 7,
pp. 729–733, 1989. https://doi.org/10.1109/9.29399.

[18] S. Gugercin and A. C. Antoulas, “A survey of model reduction by bal-
anced truncation and some new results,” International Journal of Con-
trol, vol. 77, no. 8, pp. 748–766, 2004. https://doi.org/10.1080/

00207170410001713448.

[19] S. Lall, J. E. Marsden, and S. Glavaski, “Empirical model reduction
of controlled nonlinear systems,” IFAC Proceedings Volumes, vol. 32,
no. 2, pp. 2598–2603, 1999. https://doi.org/10.1016/S1474-6670(17)

56442-3.

[20] K. Pearson, “On lines and planes of closest fit to systems of points in space,”
The London, Edinburgh, and Dublin Philosophical Magazine and Journal
of Science, vol. 2, no. 11, pp. 559–572, 1901. https://doi.org/10.1080/
14786440109462720.

[21] L. Sirovich, “Turbulence and the dynamics of coherent structures. part
1: Coherent structures,” Quarterly of applied mathematics, vol. 45, no. 3,
pp. 561–571, 1987. https://doi.org/10.1090/qam/910462.

[22] P. Holmes, J. L. Lumley, G. Berkooz, and C. W. Rowley, Turbulence, coher-
ent structures, dynamical systems and symmetry. Cambridge: Cambridge
university press, 2012. https://doi.org/10.1017/CBO9780511919701.

[23] M. Ilak and C. W. Rowley, “Modeling of transitional channel flow using bal-
anced proper orthogonal decomposition,” PHYSICS OF FLUIDS, vol. 20,
no. 3, 2008. https://doi.org/10.1063/1.2840197.

ASDJournal (2018) Vol. 6, No. 1, pp. 43–72

https://doi.org/10.2514/3.13111
https://doi.org/10.2514/3.13111
https://doi.org/10.2514/3.45653
https://doi.org/10.2514/3.20514
https://doi.org/10.2514/3.20514
https://doi.org/10.1016/j.jfluidstructs.2015.07.007
https://doi.org/10.1016/j.jfluidstructs.2015.07.007
https://doi.org/10.1016/j.ast.2017.03.030
https://doi.org/10.1016/j.ast.2017.03.030
https://doi.org/10.1007/978-3-540-78841-6
https://doi.org/10.1109/9.29399
https://doi.org/10.1080/00207170410001713448
https://doi.org/10.1080/00207170410001713448
https://doi.org/10.1016/S1474-6670(17)56442-3
https://doi.org/10.1016/S1474-6670(17)56442-3
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1090/qam/910462 
https://doi.org/10.1017/CBO9780511919701
https://doi.org/10.1063/1.2840197


∣∣∣ 72 Unsteady Aerodynamic Model Order Reduction by BPOD and Synthetic Modes

[24] F. T. Boesch and H. Prodinger, “Spanning tree formulas and chebyshev
polynomials,” Graphs and Combinatorics, vol. 2, no. 1, pp. 191–200, 1986.
https://doi.org/10.1007/BF01788093.

[25] N. P. M. Werter, R. De Breuker, and M. M. Abdalla, “Continuous-time
state-space unsteady aerodynamic modeling for efficient loads analysis,”
AIAA Journal, vol. 56, no. 3, pp. 905–916, 2018. https://doi.org/10.

2514/1.J056068.

[26] S. Binder, A. Wildschek, and R. De Breuker, “Extension of the continuous
time unsteady vortex lattice method for arbitrary motion, control surface
deflection and induced drag calculation,” International Forum on Aeroe-
lasticity and Structural Dynamics, 2017.

[27] M. R. Waszak and D. K. Schmidt, “Flight dynamics of aeroelastic vehicles,”
Journal of Aircraft, vol. 25, no. 6, pp. 563–571, 1988. https://doi.org/

10.2514/3.45623.

[28] N.N., “Cs25 - certification specifications and acceptable means of com-
pliance for large aeroplanes.,” https://www.easa.europa.eu/certification-
specifications/cs-25-large-aeroplanes, 2018. https://www.easa.europa.

eu/certification-specifications/cs-25-large-aeroplanes.
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