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Abstract
An analytical investigation of elastic and viscoelastic panel flutter is undertaken.
Through the analysis of an elementary linear homogeneous isotropic flat plate, it is
shown that elastic or viscoelastic panel flutter in the form of simple harmonic motion
is possible at incompressible to supersonic potential flow speeds. The low velocity
range is of particular importance to UAVs, MAVs, wind turbines, helicopters, general
aviation vehicles and fast flying vehicles during take-off/launch and landing. It is also
shown that while the elastic / viscoelastic correspondence principle can be applied
to linear plate (panel) formulations for stresses, strains and deformations, no such
correspondence relations exist for elastic and viscoelastic panel flutter velocities and
frequencies. The convergence of the Galerkin deflection series is investigated and its
influence on flutter velocities and frequencies, and on plate deflections is evaluated.
The influences of the panel spatial slopes in the airflow direction on flutter conditions
are also analyzed and evaluated.

1. Introduction

The general topics of static and dynamic aeroelasticity are extensively covered
in [74, 6, 5, 29, 47, 15, 80] among others. Flight vehicle panel flutter effects
in flat and curved plates and in shells are of significant concern because of the
likelihood of either immediate dynamic failures or long term material fatigue
catastrophes. The current high interest in UAVs, MAVs and wind turbines
requires consideration of the possibilities that these events will occur at low
flight velocities (< 150 km/hr) in highly flexible light weight wings, tail surfaces,
fuselages, ailerons, flaps, panels, blades, etc.

A considerable body of publications exists dealing with elastic panel flutter
and is summarized in [20, 17, 50, 51, 18, 1, 31, 21, 23, 67, 24, 22] while aero-
viscoelastic treatments are only emerging [32, 33, 10, 81, 61, 44, 72, 55, 25, 27,
26, 3, 2, 73, 39, 53, 75, 49, 4, 54, 71, 65, 66, 42, 43, 64, 63, 46, 62]. The detailed
analysis in [19] raises the important question as to when the plate response is
one of noise due to turbulent flow or when flutter in the form of simple har-
monic motion (SHM) manifests itself. In Ref. [72] an analysis is presented for
viscoelastic plate flutter subjected to random loads in a supersonic flow with
the stationary loads in the form of Gaussian white noise. Probabilistic vis-
coelastic material stress-strain analysis and failure conditions have been treated
in [41] and [40] respectively and important contributions of aerodynamic noise
are described in [30]. In the present paper, the analysis is predicated on deter-
ministic viscoelastic material properties and deterministic non-turbulent flow,
and the conditions at low and/or high velocities under which possible elastic or
viscoelastic panel SHM takes place are investigated.

Unsteady aerodynamic theory formulations are described in [6, 5, 20, 21, 23,
22, 9] to mention but a few.

In [69] the related, though distinct but more complicated, problem of sub-
sonic axial flow in elastic thin walled cylinders is investigated. The results of
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three analytical approaches indicate the possibility of cylindrical flutter at pos-
itive frequencies. Experimental data reported in [28] for a plate on an elastic
foundation indicates the presence of subsonic flow panel flutter in the form of
either traveling or standing waves.

In the present paper it is shown by the use of a simple example consisting
of a linear flat plate with 4 sides s.s. that elastic and viscoelastic panel flutter
boundaries in the form of SHM can be achieved in potential flow at any speed –
including incompressible flow – provided the proper mixtures of phase relations
are realized between aerodynamic, inertia and structural forces. If the panel
flutter problem is expanded to incorporate additional in-plane, thermal, con-
trol, piezoelectric, magneto-restrictive, smart material and/or other linear and
nonlinear forces, the above conclusions remain the same but panel flutter will
occur at different specific velocities and frequencies.

Panel flutter at low subsonic speeds is abundantly present and visible in
nature in the form of flutter of awning panels, porch and window screens, flags,
thin aluminum truck panels, UAVs, MAVs and wind turbine blades, among
others.

Ultimately, the presence of system aeroelastic or aero-viscoelastic instabili-
ties depends on the composite selection of parameters which directly influence
the coefficients of the governing integro-differential relations and on the phase
relations between the active forces.

In Refs. [65, 66, 42, 43] it is shown that panel flutter speeds can be signif-
icantly increased by respectively introducing aero-servo-viscoelastic controls or
small amplitude pressure disturbances, and thus improving flutter conditions
through postponement. Neither are considered in the present paper and only
panel flutter boundaries (eigenvalues) are analyzed.

2. Analysis

2.1 Constitutive Relations

The investigation is carried out in a Cartesian coordinate system x = {xi} with
i = 1, 2, 3 operating under the Einstein tensor notation rules. The system has a
degenerate 2–D form, x̃ = {xα} with α = 1, 2 and the flow is in the x1 direction
with the x3 coordinate normal to the panel. The panel material obeys linear
isothermal, isotropic, homogeneous viscoelastic constitutive relations in terms
of relaxation moduli Eijkl [11] [34]

σij(x, t) =

t∫
−∞

E∗ijkl (t− t′) εkl(x, t
′) dt′

= Eijkl(0) εkl(x, t)︸ ︷︷ ︸
instantaneous elastic

response

+

t∫
0

Eijkl (t− t′)
∂εkl(x, t

′)

∂t′
dt′

︸ ︷︷ ︸
time dependent viscoelastic response

(1)

or conversely in terms of creep compliances Cijkl

εij(x, t) =

t∫
−∞

C∗ijkl(t− t′) σkl(x, t′) dt′

= Cijkl(0) σkl(x, t)︸ ︷︷ ︸
instantaneous elastic

response

+

t∫
0

Cijkl (t− t′)
∂σkl(x, t

′)

∂t′
dt′

︸ ︷︷ ︸
time dependent viscoelastic response

(2)

where the linear viscoelastic relaxation moduli are given by
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Figure 1: Elastic and
viscoelastic moduli.

Eijkl(t) =

fully relaxed
modulus =
Eijkl(∞)︷ ︸︸ ︷
Eijkl∞ +

creep/relaxation dissipative contributions

by Prony series [13]︷ ︸︸ ︷
N∑
n=1

Eijkln exp

(
− t

τijkln

)
(3)

or

Eijkl(t) =

elastic
modulus =

Eijkl(0)︷ ︸︸ ︷
Eijkl0︸ ︷︷ ︸

instantaneous
response

+

N∑
n=1

Eijkln

[
exp

(
− t

τijkln

)
− 1

]
︸ ︷︷ ︸

creep/relaxation viscoelastic contributions

(4)

where underlined indices indicate no summations. The fully relaxed moduli
Eijkl∞ are defined by (See Fig. 1.)

Eijkl∞ = Eijkl0 −
N∑
n=1

Eijkln with Eijkl0 > Eijkl∞ ≥ 0 (5)

The dimensions of the various viscoelastic material parameters are displayed
in Table 1 and the listed dimensions apply to symbols with and without sub-
scripts n, hence En = E∗n τn, etc. Conditions are at rest in the interval −∞ ≤
t < 0 and therefore σij(x, t) = εij(x, t) = 0 holds in the negative time plane.
Typical elastic and viscoelastic moduli curves are shown in Fig. 1 .

Eqs. (1) in their degenerate form include elastic materials as the 3–D isotropic,
homogeneous and isothermal Hooke’s law [76]

σEij(x, t) = Eijkl0 ε
E
kl(x, t) and εEij(x, t) = Cijkl0 σ

E
kl(x, t) (6)

There are two isotropic and at most 21 anisotropic elastic Eijkl0(x) and
relaxation moduli Eijkl(x, t). While elastic Poisson’s ratios [70] are useful
material descriptors, their viscoelastic counterparts are stress, stress history
and time dependent and hence have no unique relations to material properties
[35, 45, 36, 38, 52, 77, 78, 58] Consequently, viscoelastic constitutive relations
must be written in terms of relaxation moduli or creep compliances without
recourse to Poisson’s ratios. Therefore, it follows that the expressions for vis-
coelastic bending rigidities Dijkl and D∗ijkl must also be devoid of Poisson’s
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Table 1: Dimensions

Parameters Symbols Dimensions (F = force,
L = length, T = time)

Relaxation moduli Eijkln, ETijn [F/L2], [F/L2]

E∗ijkln, E∗Tijn [F/(L2T)], [F/(L2T)]

Compliances Cijkln, C∗ijkln [L2/F], [L2/F T]

Relaxation times τijkln [T]

Differential operators Pij , Qijkl [L/L], [F/L2]

aijn, bijkln [L Tn/L], [F Tn/L2]

Bending rigidities D, Dijkln [F L]

D∗, D∗ijkln [F L/T]

ratios and that they must be formulated only in terms of moduli and plate
geometries.

Alternately the isotropic homogeneous viscoelastic constitutive relations may
be cast in a differential form, such that

Pij

{
σij(x, t)

}
= Qijkl

{
εkl(x, t)

}
(7)

with

Pij =

s∑
n=0

aijn
∂n

∂tn
and Qijkl =

s∑
n=0

bijkln
∂n

∂tn
(8)

The coefficients aijn and bijkln are material property parameters. The index
s = N of the Prony series (3) and (4) [34] Eqs. (1) and (2) are the solutions,
i.e. Green’s functions, of the differential relations (7). The isotropic elastic
Hooke’s law is given by the expressions

s = 0 PE
ij = aij0 = 1 QE

ijkl = bijkl0 = Eijkl0 (9)

and is contained in (7) above. After the elastic stress-strain relations, the sim-
plest, i.e. most degenerate, example of viscoelastic constitutive relations is

s = 1 Pij = aij1
∂

∂t
+aij0︸︷︷︸

= 0

and Qijkl = bijkl1
∂

∂t
+bijkl0 with

bijkl1

aij1
= Eijkl0

(10)
In general, the use of these differential expressions is awkward and somewhat

impractical as real materials, i.e. high polymers, require r and s values of 25 to
30 for proper characterization. The integral formulations (1) are, therefore, the
expressions of choice.

The possible presence of structural damping, i. e. Coulomb friction [12] ne-
cessitates that the terms Eijkl0 in (9) be altered to (1 + ıgijkl)Eijkl0. The

non-dimensional parameters gijkl are the coefficient of structural damping (gen-
erally 0 ≤ gijkl ≤ 0.05) and are totally unrelated to the gravitational constant.
Structural damping is due to friction in structural joints and is not a material
property of the structural components, but rather is a manufacturing condition
of the structural joints between panels and stringers and ribs.
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2.2 Plate governing relations

As a relatively simple illustrative problem,1 consider the isothermal dynamic
equilibrium of a flat rectangular plate (panel) of dimensions2 a× b× h made of
homogeneous isotropic linear elastic or viscoelastic materials. The air flow at a
constant velocity V is in the x1-direction. In the absence of in-plane tractions,
thermal expansions and control forces, the governing relations simplify to and
remain linear

L(w) = ρPL
∂2w

∂t2︸ ︷︷ ︸
inertia (T1)

+

t∫
−∞

D∗(t− t′) ∇4w(x̃, t′) dt′

︸ ︷︷ ︸
internal viscoelastic

bending resistance (T2)

+ qP

w,
spatial derivatives

of interest︷ ︸︸ ︷
∂w

∂x1
,
∂2w

∂x1∂t
,
∂w

∂t
,
∂2w

∂t2
,
∂2w

∂x2
1


︸ ︷︷ ︸

flexible panel aerodynamic pressure (T3)

=

− qL(x̃, t)︸ ︷︷ ︸
rigid panel

aerodynamic
pressure (T4)

with ∇4 =
∂4

∂x4
1

+ 2
∂4

∂x2
1∂x

2
2

+
∂4

∂x4
2

(11)

and where w = w(x̃, t) = w(x1, x2, t) unless otherwise noted. The general
isotropic viscoelastic bending rigidity is defined by

D∗p(t) =

h/2∫
−h/2

D̂∗p
[
(E1111(x3, t), E1122(x3, t)

]︸ ︷︷ ︸
homogeneous or nonhomogeneous

and isotropic or anisotropic

x2
3 dx3 =

D̂∗(t)h3

12︸ ︷︷ ︸
homogeneous
isotropic plate

(p = 1, 2, 3)

(12)
If one integrates by parts, then the T2 term can also be written as

t∫
−∞

D∗(t− t′) ∇4w(x̃, t′) dt′

︸ ︷︷ ︸
internal viscoelastic

bending resistance (T2)

= D0 ∇4w(x̃, t)︸ ︷︷ ︸
instantaneous elastic

response (T2E)

+

t∫
0

N∑
n=1

Dn exp

(
t− t′

τn

)
∂∇4w(x̃, t′)

∂t′
dt′

︸ ︷︷ ︸
time dependent viscoelastic response (T2V)

(13)
provided w(x, t) = 0 for t < 0. Consequently, the elastic and viscoelastic govern-
ing relations (11) differ only by the T4V term.3 However, the solutions wE(x̃, t)
and w(x̃, t) are equal only at t = 0. Should structural damping be active, then
Term T2E can be modified to read (1 + ıg)D0. The relations (11) and the
more general ones of Appendix B can also be derived by applying the elastic-
viscoelastic correspondence principle using Laplace or Fourier transforms.

In the case of linear aerodynamics, the aero-elastic/viscoelastic panel pres-
sure is given by one or more terms of the type

qP (x̃, t)︸ ︷︷ ︸
Term T3

= A1 w︸ ︷︷ ︸
T3.1

+ A2
∂w

∂x1︸ ︷︷ ︸
T3.2

+ A3
∂w

∂t︸ ︷︷ ︸
T3.3

+ A4
∂2w

∂x1∂t︸ ︷︷ ︸
T3.4

+ A5
∂2w

∂t2︸ ︷︷ ︸
T3.5

+ A6
∂2w

∂x2
1︸ ︷︷ ︸

T3.6

(14)

1More complicated examples include anisotropic nonhomogeneous auxetic materials, non-
linear and/or temperature effects, in-plane tractions, control forces, nonlinear aerodynamics
and materials, large deformations, random loads and/or material properties, aerodynamic
noise, turbulence, curved plates, shells, etc. See Eq. (45) in Appendix B.

2The x1-dimension a has no relation to the material property parameters an defined in
(8).

3If all Dn are set to zero for 1 ≤ n ≤ N , then the elastic solution wE(x̃, t) = w(x̃, t) for
0 ≤ t ≤ ∞ emerges. See Appendix B for definitions of the bending rigidies D.
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with the coefficients Ar = Ar(V, ω) and r = 1, 2, · · · , 6, defined by the sub-,
trans- or super- sonic aerodynamics. V [L/T] is the flight velocity and ω [1/T]
is the frequency. (See Appendix A for some examples of these aerodynamic co-
efficients.) In each case, the flexible body aerodynamics change the character of
the governing relations by altering the order of the spatial and/or temporal de-
flection derivatives, and the coefficients multiplying these derivatives. However,
that does not redefine the nature of the time exponential form of the solution
(18), only the specific values of the flutter eigenvelocities and eigenfrequencies
and of the phase relations are altered.

Similarly, the rigid body pressure (lift) is given by

qL(x̃, t) = A0

(
ρ, V, α,

dCL
dα

, airfoil geometry

)
(15)

where ρ is the air density and α the rigid body angle of attack.

Alternately by using the differential isotropic stress-strain relation form (8),
Eq. (11) may be written as4

L1(w) = P

{
ρPL

∂2w

∂t2

}
︸ ︷︷ ︸
inertia force (T1D)

+
h3

12
Q
{
∇4w

}
︸ ︷︷ ︸

internal viscoelastic
bending resistance (T2D)

+ P


qP

w,
spatial derivatives

of interest︷ ︸︸ ︷
∂w

∂x1
,
∂2w

∂x1∂t
,
∂w

∂t
,
∂2w

∂t2
,
∂2w

∂x2
1



︸ ︷︷ ︸
flexible panel aerodynamic pressure (T3D)

= − P
{
qL(x̃, t)

}
︸ ︷︷ ︸

rigid panel
aerodynamic

pressure (T4D)

(16)

which perhaps offers a clearer insight to the stability of the deflection w(x̃, t)
than the integral governing relations (11). With the operators defined by
Eqs. (9), the highest time derivative of this partial differential equation (PDE) is
of the order s+2 and its coefficients depend on a blend of elastic moduli and/or
viscoelastic material derivatives, density, bending rigidities and aerodynamic
factors. The interrelations among the coefficients of these PDE derivatives de-
termine the panel system stability.

The solutions of the homogeneous parts of Eqs. (11) and (16),

L = L1 = 0 (17)

are of the form

w(x̃, t) =

8∑
m=1

B∗m(V, ω) exp
[(
d̂m + ı ωm

)
t
]
Wm (x̃) (18)

with each and every Wm(x̃) function satisfying the BCs. The stability of the

4Note that the numerical subscripts identifying Ti terms are identical with those of the
integro-differential governing relation (11). See also Eq. (45).

Vol. 2, No. 1, pp. 53–80 ASDJournal



C. G. Merrett and H. H. Hilton
∣∣∣ 59

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 50 100 150 200 250 300

EX
PO

N
EN

T 
 d

FLIGHT  VELOCITY  (m/s)

Figure 2: Variation of

exponent d̂ with flight ve-
locity, Eqs. (20) and (21).

plate is defined by the parameter d̂ as

d̂m

(
V, ω,En,

τn, ρPL, ρ,
dCL
dα

,

geometry

)
=⇒



< 0 def
⇒ dynamically stable, lim

t→∞

{
u(x, t)

}
→ 0

= 0 def
⇒ neutrally stable at V = Vf and ω = ωf ,

i. e. SHM for u(x, t), the legacy
definition of panel flutter onset

> 0 def
⇒ dynamically unstable, for V > Vf

and lim
t→tf

{
u(x, t)

}
→ ∞

or lim
t→tf1

{∂u(x, t)

∂t

}
→ ∞

< 0 def
⇒ primarily time dependent material
and/or structural failure(s)
(before dynamic instability predominates)

lim
t→tult

{
umax(x, t)

}
→ uult(tult) or

lim
t→tult

{
σmax(x, t)

}
→ σult(tult)

(19)

with 0 < tf ≤ ∞. The last condition, even though driven by aero-viscoelastic
coupled forces, us a “simple” event where a prescribed failure condition has been
violated.

In reality, the above neutrally stable condition only defines the onset of
instability provided

∂d̂

∂V

∣∣∣∣∣
V=Vf

6= 0 (20)

If Eq. (20) is not satisfied then d̂ continues negative for increasing V , unless

d̂(V, · · · ) = 0 is an inflection point, when the constraints

∂d̂

∂V

∣∣∣∣∣
V=Vf

=
∂2d̂

∂V 2

∣∣∣∣∣
V=Vf

= 0 and
∂3d̂

∂V 3

∣∣∣∣∣
V=Vf

6= 0 (21)

must be fulfilled (See Fig. 2 ). The analysis of and the associated problems
generated by starting transients are presented in detail in [64]
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Figure 3: Viscoelastic
panel responses.
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Of course, the SHM due to the pressure qP , Term T3 in Eq. (11) , represents
panel excursions w(x̂, t) in addition to the rigid body displacements produced
by the the aerodynamic pressure qL of Term T4. Additionally, both rigid and
flexible wing bending and twisting deformations are present in the overall lifting
surface system.

The panel flutter velocity and frequency are found in the “usual elastic man-
ner” by satisfying eight homogeneous boundary conditions and setting the com-
plex determinant of coefficients Bm equal to zero. The pair of eigenvalues con-
taining the lowest value of the flight velocity V = Vf > 0 and its corresponding
frequency ωf > 0 establish the flutter conditions of the panel.

Parenthetically, one needs to add that other forms of instabilities such as
panel creep buckling and that outright material failures such as delaminations
may occur at velocities unrelated to the flutter velocities. The latter may be
larger or smaller than Vf . Fig. 3 is a schematic representation of these possibil-
ities in relation to plate bending deflections indicating the concept of lifetime
or survival time for each of these independent conditions.

Note that homogeneous partial (PDE) or integro-partial differential (IPDE)
relations and homogeneous BCs do not yield any information about the dis-
placement amplitudes Bm. On the other hand if one or more of the following
are included in the governing relations

• the rigid body aerodynamic pressures (T4) and/or

• initial imperfections w0(x̃) and/or

• at least one non vanishing BC

then expressions for the amplitudes are achievable but the eigenvalues Vf and
ωf may be obtainable only from the homogeneous parts of the governing PDEs
or IDEs.

The homogeneous elastic formulation for Eq. (11) can also be realized by
replacing D(t) with

DE = D0 =
E0 h

3

12 (1− ν2
0)

(22)

and by eliminating the time integral in term T2V in (13). It is possible to
establish a correspondence between elastic and viscoelastic stresses, strains and
displacements through the well established integral transform correspondence
principle [11, 34]
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Since the elastic-viscoelastic analogy specifically excludes Poisson’s ratios
and is limited to expressions involving only moduli, compliances, creep and
relaxation functions and convolution type constitutive relations [35, 45, 36, 42,
52, 77, 78, 58] it follows that in the Fourier transform plane

D(Ω) =

∞∫
−∞

exp(−ıΩ t)D(t) dt

︸ ︷︷ ︸
Fourier transform (FT) of D(t)

6= E(Ω)h3

12
(

1− ν2(Ω)
) (23)

Therefore, the transformed D(Ω) must be defined solely in terms of moduli as
seen in Eq. (12).

However, no known relation exists between elastic (V Ef ) and viscoelastic
(Vf ) flutter velocities. This is due to the extremely complicated transcendental

equations for d̂ = 0 establishing the eigenvalues for which only numerical, rather
than analytical, solutions can be realized.

The initial conditions of the viscoelastic panel are those of the equivalent
elastic one and, therefore, at t = 0 the viscoelastic Vf must be less than the
elastic V Ef , provided the panel reaches SHM instantaneously. Once time in-
creases and the viscoelastic relaxation moduli begin to decrease there no longer
exist any such constraints on5 Vf . Consequently, as determined by the PDE or

IPD coefficients, the actual flutter velocities for t > 0 can be Vf T V Ef depend-
ing on phase relationships between inertia, viscoelastic and aerodynamic forces
[32, 66] (See more detail in Discussion Section.)

2.3 Boundary Conditions

For a simply supported plate on four sides (4 s.s.s.) with the coordinate system
origin at xi = 0 in the plate lower left corner, the BCs are

w (0, x2, t) = w (a, x2, t) = w (x1, 0, t) = w (x1, b, t) = 0 (24)

and

t∫
−∞

D∗(t− t′) ∂
2w(x1, 0 or b, t′)

∂x2
1

dt′ =

t∫
−∞

D∗(t− t′) ∂
2w(0 or a, x2, t

′)

∂x2
2

dt′ = 0

(25)
which turns Eq. (18) into the simple harmonic motion solution form (4 s.s.s.)

w(x̃, t) = exp (ı ω t)B11(V, ω) sin
(π x1

a

)
sin
(π x2

b

)
(26)

This represents the first term of the general solution for 4 s.s.s.

w(x̃, t) = exp (ı ω t)

M∗→∞∑
m=1

Bm1(V, ω) sin
(mπ x1

a

)
sin
(π x2

b

)
(27)

Depending on other BCs, combinations of circular and hyperbolic sine and co-
sine functions are also permissible, as well as any other suitable functions. For
practical purposes, a truncated series is chosen and “convergence” is established
through an examination of w(x̃, t) values with the addition of terms to the series
until values of the function stabilize. (See Discussion Section and Tables 3 and
4.)

When (26) is substituted into the homogeneous part of the governing relation
(11) or (16), i. e. Eq. (17), it leads to[

RR11(V, ω) + ı RI11(V, ω)
] {

B1

}
= 0 (28)

5Any possible ambiguity about the ICs can be removed if one additionally imposes
w(x, 0) = wE(x, 0) = 0. However, neither vanishing or non-vanishing initial panel deflec-
tions affect the paired eigenvalues Vf and ωf .
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The paired eigenvalues V and ω are obtained by simultaneous solution of the
following two relations

RR11(V, ω) = 0 and RI11(V, ω) = 0 (29)

since the trivial solution B1 = 0 is excluded.
For more complicated BCs involving up to eight non-zero Bmns, Eq. (29) be-

comes the determinant∣∣∣RRkl(V, ω) + ı RIkl(V, ω)
∣∣∣ = 0 k, l = 1, 2, 3, 4 (30)

resulting in complex relations

R(V, ω) = 0 (31)

or
RR(V, ω) = 0 and RI(V, ω) = 0 (32)

In both the elastic and viscoelastic panel, the flutter velocity Vf is the lowest
value of the real positive eigenvalues of V paired with a real ωf > 0. This couple
can be found by trial and error or from nonlinear transcendental equation solvers
or from the solution of the relations

∂R(V, ω)

∂V
= 0 and

∂R(V, ω)

∂ω
= 0 with Vf , ωf > 0 minimum values

(33)
It is to be noted that conceptually Eqs. (30) to (33) and their solution protocols
for the paired eigenvalues V and ω are identical for elastic and viscoelastic
materials. However, specific values Vf and ωf for the viscoelastic plate, and V Ef
and ωEf for the corresponding equivalent6 elastic one will differ.

3. Discussion

3.1 Some mathematical proofs regarding subsonic panel divergence
and flutter using Galerkin’s method

Galerkin’s method [48] has been used to find the approximate flutter solutions
for rectangular panels. However, care must be exercised in selecting the number
of terms to be used in the Galerkin series because of the inherent convergence
properties of the method. An example is given in [56] dealing with static and
dynamic instability of panels in subsonic potential flow. The paper attempts to
prove that panels will only diverge at subsonic speeds and that flutter will not
occur prior to divergence. The mathematical analysis itself is entirely correct
and does demonstrate that subsonic divergence occurs before flutter, but one of
the starting assumptions is problematic. In [56] it is mentioned that the series
approximation is an infinite series “but by virtue of the convergence of Galerkin’s
method (e.g. see [59]) this can be ignored and the discussion confined to j,m =
1, 2 only.” In the quotation j and m are the indices for the series expansion and,
therefore, the referenced expansion is limited to only two terms. By limiting
the expansion to two terms, the assumption is made that the results from a two
term expansion are representative of the results from larger expansions.

Unfortunately, the above assumption is not correct, and it has been demon-
strated in [60] that, for some cases, Galerkin’s method can have a non-uniform
convergence. In [60] two situations are examined, namely supersonic membrane
flutter and a clamped-clamped rod with a follower force. The membrane flut-
ter example originated in [7] where a paradox is identified, which states that
Galerkin’s method would produce a supersonic flutter velocity while the exact
solution would not. This discrepancy is explained by demonstrating that mem-
branes do not have a normal determinant, where a normal determinant is defined

6same plate BCs, ICs, geometry, E0, etc.
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by when the series
∞∑
i=1

∞∑
j=1

|Aij | converges. The Aij represent the terms of the

coefficient matrix derived from the system of governing equations. A typical
plate problem in solid mechanics does have a normal determinant and, there-
fore, Galerkin’s method produces reliable results. In [8] it is suggested that as
a plate approaches a membrane, the convergence of Galerkin’s method becomes
slower to the point of failure when a membrane is actually reached. In [60] it is
demonstrated that the discrepancy is the result of using normal determinants
in the analysis of [8] If the more general conditions for the convergence of an
infinite series by von Koch [79] are used, then Galerkin’s method can also be
shown to converge for the membrane flutter; however, the convergence is non-
uniform in general. The three conditions (series) demonstrated by von Koch
that must converge are

∞∑
i=1

|Aij − 1|
∞∑
i=1

∞∑
j=1

|Aij − 1|2
∞∑
i=1

x2
i (34)

where [A] is the coefficient matrix as before and {x} is the vector of system
variables that satisfy [A] {x} = 0.

The non-uniform convergence of Galerkin’s method is numerically demon-
strated in the second example of a clamped-clamped rod with a follower force in
[60] In [59] it was shown earlier that the rod diverged (buckled) with a two term
expansion in the Galerkin method. However, if the expansion is taken to four
terms, the rod is no longer buckled. In [8] it was demonstrated that a similar
result can be obtained for supersonic membrane flutter where eight terms are
required to demonstrate flutter.

While the membrane paradox originated with supersonic membranes, the
subsequent non-uniform convergence of Galerkin’s method shown in [60] appears
to hold for subsonic panel flutter cases as shown by the present paper. It is
suggested that to correctly use Galerkin’s method for any panel flutter case
that the von Koch conditions [79] are used to estimate the number of terms
required for convergence.

3.2 General considerations

Circumstances leading to panel flutter are found in self-excited closed loop sys-
tems and are due to the interdependence between aerodynamic and inertia forces
and structural deflections as well as their spatial and temporal derivatives. The
one open flutter driver parameter in flight vehicles is their velocity. Conse-
quently, for other fixed conditions7 the lowest velocity, i. e. the flutter velocity,
needs to be established for entire vehicles and for their components such as
outer skin panels. In the present linear formulation, the existence of SHM is
controlled by the relative values of the coefficients of displacements and their
derivatives in Eqs. (17), which in turn are governed by the interrelations be-
tween inertia, elastic/viscoelastic, aerodynamic, thermal, in-plane and control
forces. Material properties determine Term T2, while the type of aerodynamic
flow and the flight velocity V control the nature of of Term T3 in (11) and/or
(16). Additionally, the BCs directly affect the matrix of the coefficients of the
Bm amplitudes of (18). All of the above conditions coalesce to determine the
eigenvalues and hence the flutter conditions Vf and ωf .

In Eq. (45) of Appendix B, the in-plane tractions T5, T7, T9 and T11 due to
deflections are seen to be inherently nonlinear, while the aerodynamic lift terms
T13 can be linearized for small angles (/ 0.1 rad) by exchanging angular argu-
ments for the sine and arctangent. It was demonstrated in Ref. [37] that for
steady state temperatures, the thermal loads T16 to T18 not only change their
values in time but may even reverse signs, thus changing tensile to compressive

7aerodynamic shapes, mass distributions, material properties, controls, trim angles of at-
tack, etc.
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tractions and vice versa. Additionally, in steady state elasticity, in-plane ten-
sions generally tend to stabilize the system, unfortunately the same cannot be
said for equivalent6 quasi-steady state viscoelastic systems because the phase re-
lations are different for the elastic and viscoelastic governing relations. Stability
conditions must be examined on a case by case basis.

The presence of viscoelastic material damping, or for that matter external
and/or structural damping – Terms T2 and T3 in (45) – offers no guarantees that
viscoelastic flutter speeds Vf will be higher or lower than the corresponding6

elastic V Ef . The values of these Vf s can move in either direction depending
again on the character of the phase relationships between aerodynamic, elas-
tic/viscoelastic and inertia forces. Similar comments can be made regarding the
contributions made by changes in mass and aerodynamic forces. However, since
Eqs. (28) and (30) are transcendental relations in the eigenvalues Vf and ωf no
analytical solutions are attainable and hence no general conclusions about the
interrelations, if any, between elastic and viscoelastic panel flutter velocities can
be drawn.

Of course, in addition to or instead of flutter the panel may also experience
creep buckling and/or failures such as delamination, crack propagation, fatigue,
etc. [66] which will limit the panel’s lifetime, but neither phenomenon is consid-
ered here as the concentration of this study is solely on panel flutter. Depending
on the phase relations any one of the three phenomena – panel flutter, creep
buckling, material failures – can precede the other two in time and, therefore,
make it the dominant analysis/design criterion of necessity. In Fig. 3 the var-
ious possible panel modes of deflection and survival times are illustrated. The
relative time wise position of each curve is dependent on individual plate pa-
rameters, such as relaxation moduli, inertia, aerodynamic forces, etc., and will
vary accordingly.

For purposes of general stability discussions, consider the simplest elastic and
viscoelastic examples governed by constitutive equations (9) and (10). Applying
Galerkin’s method [48] to (16) removes the x-dependences8 reduces the relations
to time ODEs of the type9

elastic =⇒ AE2 ẄE(t) + AE1 ẆE(t) + AE0WE(t) + AE00 = 0 (35)

simple viscoelastic10 =⇒ AV3
...
W(t) +AV2 Ẅ(t) +AV1 Ẇ(t) +AV0W(t) +A00 = 0

(36)
The Ak coefficients contain portions which are independent of aerodynamic

input (T1, T2, Eq. (11)) and portions that are functions of the flight velocity V
(T3.1 to T3.6, Eq. (14)). See Table 2.

For the general viscoelastic stress-strain relations, Eq. (36) becomes

general viscoelastic =⇒ AV2 Ẅ(t) + AV1 Ẇ(t) + AV0W(t)

+ AVINT

 E0 W(t)︸ ︷︷ ︸
elastic

contribution

+

t∫
0

E(t− t′) Ẇ(t′) dt′

︸ ︷︷ ︸
creep / relaxation contribution

 + A00 = 0 (37)

8Alternately, one can employ separation of variables to extract the time ODE portions of
the governing relations or substitute the solution form (18) that satisfies the BCs, and then
manipulate the coefficients in the same manner as outlined above for the Galerkin approach.

9The application of Galerkin’s method to a flexible viscoelastic panel on “rigid” supports
creates the physical equivalent of a rigid plate on flexible viscoelastic supports.

10Based on first derivatives only stemming from the alternate differential formulation of the
constitutive relations, Eqs. (7).
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ODE Term Contributing Terms Source of Terms Eq. No.

AE2 T1, T3.5 inertia & aerodynamics elastic

AE1 T3.3, T3.4 aerodynamics (35)

AE0 T2, T3.1, T3.2, T3.6 stiffness & aerodynamics

AV3 T1, T3.5 inertia & aerodynamics simple

AV2 T3.3, T3.4 aerodynamics viscoelastic

AV1 T2, T3.1, T3.2, T3.6 stiffness & aerodynamics (36)

AV0 T2 stiffness

AV2 T1, T3.5 inertia & aerodynamics general

AV1 T3.3, T3.4 aerodynamics viscoelastic

AV0 T2E , T3.1, T3.2, T3.6 elastic stiffness (13) (37)
and aerodynamics

AVINT T2V creep stiffness (13)

Table 2: Aerodynamic
influence on Eqs. (35) to
(37) coefficients.

Next one substitutes algebraic variables for the derivatives according to Un =
dnW/dtn. Application of an aerodynamic theory appropriate to each flight
regime allows determinations of each coefficient Ak as functions of V . For V = 0
all coefficients in both relations will be positive. This is due to the fact that
with vanishing V s these remaining coefficients represent only inertia, material
and structural open loop contributions.

Applying Descartes’ rule of signs [14] to the modified homogeneous portions
of the PDEs, i. e.

elastic =⇒ AE2 (UE)2 + AE1 UE + AE0 = 0 (38)

simple viscoelastic =⇒ AV3 U3 + AV2 U2 + AV1 U + AV0 = 0 (39)

determines the number of possible positive real roots d̂ defining the solution
(See (18))

W(t) ∼ exp
[(
d̂+ ı ω

)
t
]

(40)

Therefore, when V = 0 there are no real positive roots and d̂ ≤ 0 indicating
stability of elastic and simple viscoelastic (36) motions. However, Descartes’

rule does not account for any possible positive parts of the complex roots d̂,
which may yield larger or smaller Vf s than those emerging from the positive real
roots. Furthermore, Descartes’ rule cannot be applied to the general viscoelastic
integro-differential relation (37). However it can be used in conjunction with
the general PDE (16).

At this point a caveat needs to be introduced when the selected W (x̃)s of
Eq. (18) are orthogonal functions. The latter impinges on the aerodynamic term
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T3.2 and T3.4 contributions which are out of phase with all others. If integral
methods are applied, such as for instance Galerkin’s approach, the orthogonality
may remove these aerodynamic contributions either partially or totally. This is
indeed the case in [17] and [21] and in this paper, Eq. (26), when only a single
sine or cosine term is used to define the x1 dependence of w(x̃, t). However, if
more than on term is chosen then the influences of the two aerodynamic terms
generally remain after the Galerkin application.

Two seemingly inexplicable questions remain:

• (A) What is the relation, if any, between the error introduced by assuming
an approximate form for the plate deflection w(x̃, t), as in (26), and the
resulting imprecise eigenvalues for the flutter Vf and ωf pair? – No such
expression appears derivable.

• (B) How large an error can be tolerated in the approximate w(x̃, t) ex-
pression before the associated resulting inexact Vf value can be trusted?
– In the absence of an analytic relation between Vf and w, the Vf con-
vergence and error analyses have to be established independently of the
w(x̃, t) convergence. (See Tables 3 and 4.)

The coefficients of the governing relations are special conglomerates of iner-
tia, aerodynamic and bending stiffness contributions. The solution and stability
of these relations depend only on the fortuitous relative values of their coeffi-
cients and not on where their contributions may originate. The panel aerody-
namic pressure (T3 terms in (14)) is defined in terms of deformations and their
spatial and temporal derivatives. The presence or absence of any one or more
aerodynamic terms is not of primary contributory importance as their missing
values can be compensated for by adjusting other parameters in the coefficient
group, except for the combination T3.3 and T3.4 which is purely aerodynamic.
(See Table 2.)

In the final analysis, it must be remembered that the governing relations
used here or elsewhere in similar or different forms, whether linear or nonlinear
and more or less sophisticated, represent but a model and not necessarily the
real world.11 The behavior of these relations and their stability are unique to the
chosen model and their associated parameters, and may or may not approximate
or accurately simulate reality in every or most details.

3.3 A few illustrative examples

In the isothermal plate illustrative examples no additional thermal moments or
in-plane forces are introduced. Nor are any external control forces/moments
applied to the example panel. The latter preserve the linearity of the problem –
see Eq. (45). Representative results of a some illustrative examples are displayed
in Tables 3 to 5 and in Figs. 4 to 6. The dimensions of the current four sides
simply supported and fixed panels are a = b = 0.1 m, thickness h = .0005 m
with density = 2700 kg/m3 and an air density of 1.225 kg/m3. The Galerkin
integrals were evaluated analytically on a laptop using MATLABTM symbolic
routines.

Tables 3 to 5 summarize elastic and viscoelastic results. Increases in τ
values are due to decreased temperatures, i. e. increases in temperatures lead
to faster creep rates and smaller relaxation times. The entries with τ = 0 are
elastic panels, while the others with τ 6= 0 represent viscoelastic materials. Note
that all examined cases for the selected parameters produce flutter velocities
and frequencies at reasonable positive values. No nearly zero Hz frequencies
were encountered, even though the iterative elastic eigenvalues solutions were
deliberately started at ω = 0. This is unlike the results obtained in [18] and [21]

11A parallel exists in semantics theory defined among others by the statement: “The map
is not the territory” [57]
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No. of Terms Vf ωf wmax Convergence
M∗ in Eq. (27) (m/s) (Hz) (m/m)

with N∗ = 1
Vf ωf wmax

1 85 / 85 6.13 / 6.13 0.000 / 1.000
2 85 / 85 5.23 / 6.13 0.951 / 1.000 Y/Y
3 85 / 85 5.13 / 6.06 0.951 / 1.004
4 85 / 85 5.13 / 6.06 1.006 / 1.004 Y/Y N/Y
6 85 / 85 5.13 / 6.06 0.956 / 1.004
8 85 / 85 5.13 / 6.06 0.956 / 1.004 Y/Y
10 85 / 85 5.13 / 6.06 0.956 / 1.004

Table 3: Galerkin ap-
proach results for an elas-
tic four S.S.S. panel ex-
posed to subsonic poten-
tial flow with / without
x1 Derivatives.

No. of Vf ωf wmax Convergence
Terms M∗ (m/s) (Hz) (m/m)

in (27)
with Vf ωf wmax

N∗ = 1

1 485 / 350 24.77 / 24.77 0.000 / 1.000
2 980 / 975 45.49 / 44.91 1.244 / 1.242
3 1655 / 1615 56.76 / 55.53 1.334 / 1.324
4 1380 / 1365 52.46 / 51.76 1.300 / 1.295
6 1405 / 1390 52.88 / 51.95 1.300 / 1.291 Y/N
8 1410 / 1390 52.96 / 51.62 1.300 / 1.284 N/Y
10 1410 / 1390 52.96 / 51.57 1.300 / 1.284 Y/Y Y/N Y/Y

Table 4: Galerkin ap-
proach results for an elas-
tic four S.S.S. panel ex-
posed to supersonic po-
tential flow with / without
x1 derivatives.

where almost zero frequencies were reported for their 2 sides s.s and 2 sides free
elastic subsonic panels.

In the previous publications [18, 1, 31, 21] which indicate lack of subsonic
panel flutter, the results appear to have come from a premature truncating of
the deflection series. The convergence of the series (27) and of the corresponding
flutter conditions were investigated by including successively more terms in the
w(x̃, t) series until the solutions “converged” as shown in Tables 3 and 4. Note
the radical changes in flutter frequency values between one and two term series
solutions and the different convergence occurrences for Vf , ωf and wmax.

3.4 Low and high speed elastic panel flutter

Tables 3 and 4 display results for sub- and super- sonic illustrative examples with
typical ordinary properties. Both cases with x1 derivatives present and absent
in the aerodynamic force definition of Eq. (14) are considered. The effect of
terms T3.2 and T3.4 seems to be negligible on the flutter velocity and greatest
on both the flutter frequency and bending deflection.

The possible presence of these first spatial derivatives in some of the aero-
dynamic force definitions12 radically alters the character of the plate governing
relations (11) and (45). Without either or both of these terms, in addition to
time derivatives only derivatives of even orders in x1 and the function itself
are present in the governing relations. For instance, the illustrative example
of 4 s.s.s. BCs requires only sine terms in the series for the deflection w(x̃, t),
Eqs. (18) and (27), to satisfy the BCs. Without terms T3.2 and T3.4 these
expressions also satisfy the aforementioned governing relations term by term.

12Terms T3.2 and/or T3.4 in Eq. (14)
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Figure 4: Subsonic
panel flutter velocity.
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Figure 5: Supersonic
panel flutter velocity.
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convergence.

Normal to the airflow, the curvature in the x2-direction is of limited sig-
nificance since its presence with or without the use of the Galerkin protocol
only changes the values of the coefficients in the governing relations. Similar or
equal changes in these coefficients can also be produced through normal varia-
tions of standard parameters, such as stiffness, inertia, aerodynamics, etc. For
the simply supported edges parallel to the x1-axis only a single half sine wave
(sinπx2/b) is required to satisfy the BCs along those plate edges, as seen in
Eq. (27).

As a check on possible divergence occurrences, attempts were made to find
values of V E > 0 by setting d̂ = ω = 0. None were found by including or
excluding the T3.2 and T3.4 terms, indicating that the elastic eigenvalues Vf
and ωf represent panel flutter. These results are, of course, predicated on the
use of a sufficient number of terms in the truncated deflection series (27) to
assure proper convergence.

For the examples considered here, the presence of the spatial derivatives
influences the results in the subsonic cases, but in the supersonic flow cases.

3.5 Low and high speed viscoelastic panel flutter

Table 5 depicts combined (converged) results for identical elastic or viscoelastic
panels subjected to subsonic or supersonic aerodynamic pressures. These re-
sults are, of course, strongly influenced by the choice of parameters and their
interaction of the various forces, i.e. their phase relations, with each other.
Consequently, any conclusions must be considered specific to only the present
parameter set and do not lead to any further possible generalizations. Similar
conditions were noted for the viscoelastic instabilities in [32, 33, 10, 81, 61, 44]

The present limited results indicate that the viscoelastic flutter velocities are
generally lower than their elastic counters parts, while the flutter frequencies
are nearly equal. Thus indicating that in this instance the additional presence
of viscoelastic damping had a destabilizing effect. However, different value com-
binations of the various parameters can produce different results with increased
flutter velocities and associated stabilizing effects.

For viscoelastic flutter velocities and frequencies, the Galerkin series con-
verged with four terms as seen in Fig. 6 and in Tables 3 and 4.
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Table 5: Panel flutter
conditions. Term T3.2 & T3.4 Subsonic Supersonic

Coefficients

τ (s)
E∞

E0
A2 and A4 in

Eq. (14) Vf (m/s) ωf (Hz) Vf (m/s) ωf (Hz)
(x1 derivatives) / Mf / Mf

0 1 6= 0 (included) 85 / 0.25 5.13 1410 / 4.15 52.96
0 1 = 0 (excluded) 85 / 0.25 6.06 1390 / 4.09 51.57
1 .5 6= 0 (included) 80 / 0.24 7.844 485 / 1.41 30.76
10 .5 6= 0 (included) 80 / 0.24 7.843 485 / 1.41 30.76
102 .5 6= 0 (included) 80 / 0.24 7.833 485 / 1.41 30.76
103 .5 6= 0 (included) 85 / 0.25 5.128 485 / 1.41 30.76
104 .5 6= 0 (included) 85 / 0.25 5.128 485 / 1.41 30.76
105 .5 6= 0 (included) 85 / 0.25 5.128 485 / 1.41 30.76
1 .1 6= 0 (included) 55 / 0.16 15.37 485 / 1.41 30.76
10 .1 6= 0 (included) 55 / 0.16 15.37 485 / 1.41 30.76
102 .1 6= 0 (included) 60 / 0.18 14.27 485 / 1.41 30.76
103 .1 6= 0 (included) 80 / 0.24 7.843 485 / 1.41 30.76
104 .1 6= 0 (included) 85 / 0.25 5.128 485 / 1.41 30.76
105 .1 6= 0 (included) 85 / 0.25 5.128 485 / 1.41 30.76
1 .5 = 0 (excluded) 85 / 0.25 6.06 1365 / 3.96 51.75
10 .5 = 0 (excluded) 85 / 0.25 6.06 1365 / 3.96 51.75
102 .5 = 0 (excluded) 85 / 0.25 6.06 1365 / 3.96 51.75
103 .5 = 0 (excluded) 85 / 0.25 6.06 1365 / 3.96 51.75
104 .5 = 0 (excluded) 85 / 0.25 6.06 1365 / 3.96 51.75
105 .5 = 0 (excluded) 85 / 0.25 6.06 1365 / 3.96 51.75
1 .1 = 0 (excluded) 70 / 0.20 12.64 1365 / 3.96 51.75
10 .1 = 0 (excluded) 85 / 0.25 6.06 1365 / 3.96 51.75
102 .1 = 0 (excluded) 85 / 0.25 6.06 1365 / 3.96 51.75
103 .1 = 0 (excluded) 85 / 0.25 6.06 1365 / 3.96 51.75
104 .1 = 0 (excluded) 85 / 0.25 6.06 1365 / 3.96 51.75
105 .1 = 0 (excluded) 85 / 0.25 6.06 1365 / 3.96 51.75
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4. Conclusions

The analysis of a simple linear isothermal isotropic elastic and viscoelastic flat
plate without any external controls or thermal moments reveals that panel flut-
ter in the form of SHM is possible at any velocity from incompressible to su-
personic. Even though the elastic-viscoelastic correspondence principle applies
to stresses, strains and deflections, the viscoelastic panel flutter velocities bear
no relation to their elastic counterparts. They can be Vf T V Ef depending on
phase relationships between the inertia, viscoelastic, thermal, in-plane, control
and aerodynamic forces. Consequently, more complicated linear or nonlinear
configurations and viscoelastic materials will also lead to panel fluter in the
same flight regimes.

With converging deflection series, no positive velocity eigenvalues were found
at zero frequency, even though the elastic eigenvalue iterative solution proto-
col was deliberately started by specifying ω = 0. These results indicate that
only panel flutter and an absence of panel divergence conditions are achieved,
provided a sufficient number of terms are used in the deflection series to assure
convergence. Flutter velocities, flutter frequencies and panel deflections each
required a different number of terms in the truncated deflection series expres-
sion.

The caveat for self excited closed loop systems is that more damping, mass,
lift, control and/or stiffness will not necessarily produce larger flutter velocities
for any structural material. The proper clues lie in the phase relations between
aerodynamic, inertia and viscoelastic forces and require examination on a case
by case basis.

In the final analysis, the solution of the governing relations is at the mercy
of the chosen model which does not necessarily represent the real world in its
entirety.

Additionally, the panel may also experience creep buckling, material failures,
aging, etc., where any one may occur time-wise ahead of the others including
flutter or quasi-static divergence of panels and lifting surfaces, thus making the
earliest occurrence the analysis/design criterion of necessity and choice.
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A Aerodynamic pressure function examples

Several representative examples for the flexible body unsteady aerodynamic
pressure qP (x̃, t) of Eq. (14) are provided in [21] For low Mach number M
subsonic flow in the x1-direction it can be approximated by

qP (x̃, t) ≈ A00(x1) ρ∞ V 2︸ ︷︷ ︸
= 2 q∞

[
∂2w

∂x2
1

+
2

V

∂2w

∂x1∂t
+

1

V 2

∂2w

∂t2

]
M < 1 (41)

while for supersonic flow at low reduced frequencies, aω/V � 1, the expression
becomes

qP (x̃, t) ≈ ρ∞ V 2

√
M2 − 1

[
∂w

∂x1
+
M2 − 2

M2 − 1

1

V

∂w

∂t

]
M > 1 (42)
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or the so-called “piston theory” approximation can be used to yield

qP (x̃, t) ≈ ρ∞ V 2

M

[
∂w

∂x1
+

1

V

∂w

∂t

]
M > 1 (43)

The function A00 is defined as

A00(x1) =
1

π

1−x1/a∫
x1/a

ln |y| dy 0 ≤ x1 ≤ a (44)

B All inclusive plate governing relations

For small deflections, additional terms can be included in the governing relations
to account for non-homogeneous anisotropic behavior, in-plane loads, thermal
and in-plane loads, aerodynamic noise and control forces. Such an “all inclusive”
formulation produces a considerably more complex plate equilibrium equation13

LPL
{
w(x1, x2, t)

}
= ρPL(x)

∂2w(x, t)

∂t2︸ ︷︷ ︸
inertia (T1PL)

+

external contributions︷ ︸︸ ︷
cV D(x, t)

∂w(x, t)

∂t︸ ︷︷ ︸
viscous mechanical

damping (TPL)

+ ı g E0 (x) w(x, t)︸ ︷︷ ︸
structural damping =

Coulomb (dry) friction (T3PL)

+

t∫
−∞

∂2

∂x2
1

(
D∗1111(x, t− t′) ∂

2w(x, t′)

∂x2
1

)
dt′

︸ ︷︷ ︸
elastic or viscoelastic bending resistance (T4APL)

+

t∫
−∞

2 ∂2

∂x1∂x2

([
D∗1212(x, t− t′) + 2D∗2323(x, t− t′)

]∂2w(x, t′)

∂x1∂x2

)
dt′

︸ ︷︷ ︸
elastic or viscoelastic bending resistance (T4BPL)

+

t∫
−∞

∂2

∂x2
2

(
D∗2222(x, t− t′) ∂

2w(x, t′)

∂x2
2

)
dt′

︸ ︷︷ ︸
elastic or viscoelastic bending resistance (T4CPL)

−


nonlinear contribution︷ ︸︸ ︷

t∫
−∞

∫ a

0

D∗1111(x1, x2, t− t′)
(
∂w(x1, x2, t

′)

∂x1

)2

dx1 dt
′

︸ ︷︷ ︸
in plane force due to length change in x1 direction (T5PL)

+NEX
11 (x2, t)︸ ︷︷ ︸

external force
(T6PL)


∂2w

∂x2
1

+


nonlinear contribution︷ ︸︸ ︷

t∫
−∞

∫ b

0

D∗2222(x1, x2, t− t′)
(
∂w(x1, x2, t

′)

∂x2

)2

dx2 dt
′

︸ ︷︷ ︸
in plane force due to length change in x2 direction (T7PL)

+ NEX
22 (x1, t)︸ ︷︷ ︸

external force
(T8PL)


∂2w

∂x2
2

13The differential form may be obtained through formal derivation or by simply replacing
the integral expressions with appropriate Q operators and all other terms should have proper
P added [34] Also see Eqs. (11) and (16).
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−


nonlinear contribution︷ ︸︸ ︷

t∫
−∞

∫ a

0

D∗1212(x1, x2, t− t′)
∂w(x1, x2, t

′)

∂x1

∂w(x1, x2, t
′)

∂x2
dx1 dt

′

︸ ︷︷ ︸
in plane force due to angle change between x1 & x2 directions (T9PL)

+ NEX
12 (t)︸ ︷︷ ︸

external force
(T10PL)


∂2w

∂x1∂x2

−


nonlinear contribution︷ ︸︸ ︷

t∫
−∞

∫ b

0

D∗1212(x1, x2, t− t′)
∂w(x1, x2, t

′)

∂x1

∂w(x1, x2, t
′)

∂x2
dx2 dt

′

︸ ︷︷ ︸
in plane force due to angle change between x1 & x2 directions (T11PL)

+ NEX
12 (t)︸ ︷︷ ︸

external force
(T12PL)


∂2w

∂x1∂x2

+ â0(x2)︸ ︷︷ ︸
= dCl/dα

ρ∞ V 2

2︸ ︷︷ ︸
= q∞

sin


π

2αST (x2)


wing contribution

Eq. (46)︷ ︸︸ ︷
AW (α, θ,W ) +

panel contribution
Eq. (47)︷ ︸︸ ︷

arctan
[
AP (x̃, t, w)

]︸ ︷︷ ︸
combined angle of attack due to

deformed wing and panel


︸ ︷︷ ︸

lift forces (T13PL)

+ NP
11(x, t)

∂2w

∂x2
1︸ ︷︷ ︸

x1 piezo force (T14PL)

+ NP
22(x, t)

∂2w

∂x2
2︸ ︷︷ ︸

x2 piezo force (T15PL)

+ NT
11(x, t)

∂2w

∂x2
1︸ ︷︷ ︸

x1 thermal force (T16PL)

+ NT
22(x, t)

∂2w

∂x2
2︸ ︷︷ ︸

x2 thermal force (T17PL)

+ 2 NT
12(x, t)

∂2w

∂x1∂x2︸ ︷︷ ︸
thermal shear
force (T18PL)

+
∂MT

11

∂x2
2︸ ︷︷ ︸

x3 load due
to MT

11(T19PL)

+
∂MT

22

∂x2
1︸ ︷︷ ︸

x3 load due
to MT

22(T20PL)

+ 2
∂MT

12

∂x1∂x2︸ ︷︷ ︸
x3 load due

to MT
12(T21PL)

+ ∆p

q, x, t, α,
panel contributions︷ ︸︸ ︷

w,
∂w

∂x1
,
∂2w

∂x1 ∂t
,
∂w

∂t
,
∂2w

∂t2
,

wing contributions︷ ︸︸ ︷
θ,
∂θ

∂t
,
∂2θ

∂t2
,W,

∂W

∂t
,
∂2W

∂t2


︸ ︷︷ ︸

aerodynamic noise pressure (T22PL)

+ FV (x, t)︸ ︷︷ ︸
vibratory

force (T23PL)

+FSC


proportional (T24P), integral (T24I) and/or differential (T24D) controller︷ ︸︸ ︷
x, t, w(x, t),

∂w(x, t)

∂t
,
∂2w(x, t)

∂t2
,
∂3w(x, t)

∂t3
,

t∫
0

w(x, t′) dt′


︸ ︷︷ ︸

external closed loop servo−control force (T24PL)

+ FC


piezo−
electric

voltage (T25PZ)︷ ︸︸ ︷
V (x, t, w) ,

MR
current

(T25MR)︷ ︸︸ ︷
I(x, t, w),

smart
materials
(T25SM)︷ ︸︸ ︷

σSM(x, t, w)


︸ ︷︷ ︸

external open or closed loop control force (T25PL)

+ FIP (x, t)︸ ︷︷ ︸
cabin

presurization (T26PL)

= 0 (45)
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with ı =
√
−1 and where deflections for the plate w = w(x̃, t) = w(x1, x2, t) and

for the wing14 are W = W (x2, t) unless otherwise indicated. The angle αST (x2)
is the section stall angle. Terms T5PL, T7PL, T11PL and T16PL through T21PL

are inherently nonlinear.
In the absence of chordwise bending the panel effective angle of attack due

to wing contributions is

AW (α, θ,W ) =

fα(x2)=built in
rigid angles︷ ︸︸ ︷

αr(x2)− α0(x2) +

angle of
attack︷ ︸︸ ︷
α(x2) +

wing angle
of twist︷ ︸︸ ︷
θ(x2, t) +

wing bending contribution︷ ︸︸ ︷
arctan

(
1

U∞

∂W (x2, t)

∂t

)
︸ ︷︷ ︸

wing aero−viscoelastic contributions

(46)
and the angle of attack due to panel deflections is a selective combination of the
following terms (See Eqs. (41) to (43).)

AP (x̃, t, w) = arctan

{
∂w

∂x1
+

1

V

∂w

∂t
+ a

[
∂2w

∂x2
1

+
1

V 2

∂2w

∂t2
+

1

V

∂2w

∂x1∂t

]}
(47)

The bending rigidities Dijkl are defined as

D∗ijkl(x̃, t− t′) = D∗ijkl(x1, x2, t− t′) =

h/2∫
−h/2

E∗ijkl(x, t− t′) x2
3 dx3 (48)

Terms such as T4APL of Eqs. (45) and all others which include D∗ijkl terms can
be integrated by parts to yield

t∫
−∞

∂2

∂x2
1

(
D∗1111(x, t− t′) ∂

2w(x, t′)

∂x2
1

)
dt′

︸ ︷︷ ︸
elastic or viscoelastic bending resistance (T4APL)

=

∂2

∂x2
1

(
D1111(x, 0)

∂2w(x, t)

∂x2
1

)
︸ ︷︷ ︸

instantaneous elastic response (T4AELPL)

+

t∫
0

∂2

∂x2
1

(
D1111(x, t− t′) ∂

3w(x, t′)

∂x2
1∂t
′

)
dt′

︸ ︷︷ ︸
viscoelastic creep/relaxation response (T4AVEPL)

(49)
When unsteady thermal conditions due to temperatures T (x, t) are included,

then all D∗ijkl(x̃, t− t′) must be replaced by D∗ijkl(x̃, t, t
′) in all above relations,

with similar substitutions for the E∗ijkl(x̃, t − t′). This eliminates the presence
of convolution time integrals in the constitutive relations (1) and wherever they
have been applied and changes these relations to

σkl(x, t) =

t∫
−∞

E∗klmn [x, t, t,′ T (x, t′)] εmn(x, t′) dt′

︸ ︷︷ ︸
stresses generated by ordinary strains

−
t∫

−∞

ET∗kl [x, t, t,′ T (x, t′)] αT (x, t′) dt′

︸ ︷︷ ︸
thermal stresses

(50)
which for static temperatures reduce to

σkl(x, t) =

t∫
−∞

E∗klmn [x, t− t,′ T (x)] εmn(x, t′) dt′ −
t∫

−∞

ET∗kl [x, t− t,′ T (x)] αT (x) dt′

(51)

14generic designation for any lifting surface, such as wing, tail, fuselage, flap, aileron, etc.
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where α is the coefficient of thermal expansion with dimensions [L/(◦K L)], with
◦K denoting degrees Kelvin or Centigrade.

The inclusion of large deformations and/or curved plates fundamentally al-
ters Terms T4PL in Eq. (45) and requires the use of an additional governing
relation [16]

C Modifications to MATLABTM eigenvector subroutine
POLYEIG

The Subroutine POLYEIG [68] as provided by MATLABTM was written to
return eigenvectors which have the lowest errors. Unfortunately those are not
necessarily the desired ones corresponding to their lowest positive values.15 In
the currently considered example the subroutine consistently returned zero val-
ues for all the coefficients Bmn of the deflection series (26). This phenomenon
manifest itself for the cases when the x1 derivatives are absent in (14) but it
did not occur when the derivatives are included. One reason why in the latter
case the zero displacement solution is not necessarily the one with the lowest
errors is because the selected Galerkin sine series does not satisfy the governing
relation term by term when the cosine terms stemming from the x1 derivatives
are included.

Consequently, the native MATLABTM subroutine was modified to return
the lowest positive eigenvectors, i.e. the principal eigenvalues. On the other
hand, the Vf and ωf eigenvalue pairs were computed by a separate non-library
subroutine especially developed to return the lowest positive velocity eigenvalues
with their paired frequencies.
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