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Abstract
Dynamic responses of plates with temperature dependent and nonhomogeneous lin-
ear viscoelastic functionally graded materials (VFGM) are investigated under lift and
aerodynamic noise loadings, and thermal stresses and moments. Due to the strong
temperature dependence of viscoelastic properties, thermal gradients in essence pro-
duce VFGM in addition to other sources. In a fundamental sense VFGM, as well
as their elastic counterparts (EFGM), are non-homogeneous isotropic or anisotropic
materials and need to be treated as such. Creep buckling and flutter instabilities,
and probabilities of material failures are analyzed to determine plate survival times.
Optimum designer materials using inherent viscoelastic damping properties, particu-
larly viscoelastic functionally graded ones, are studied to minimize thermal stress and
bending load effects while concurrently lowering failure probabilities and extending
survival times. Instead of using “off the shelf” materials for specific service demands,
the inverse protocol in essence, leads to discoveries of best material properties and
their optimal distributions throughout the structure and its components. Subsequent
tasks of how to manufacture such designer materials are not covered here and are left
to a separate study.

Keywords: aerodynamic/acoustic dynamic creep buckling, designer viscoelastic ma-
terials, functionally graded materials, panel flutter, probabilistic failures, survival
times, thermal stresses, viscoelasticity

1. Introduction

Viscoelastic materials are known for their ability to dissipate energy [1 – 3]. This
property has been successfully used by the senior author and his colleagues to
produce effective passive structural control for column and plate creep buckling,
various vibratory modes, and aero-viscoelastic phenomena, such as torsional
divergence, and wing and panel flutter. In self-excited systems the application
of increased dissipation may stabilize or destabilize such systems depending on
the of damping on phase relations.

A comprehensive literature review and analysis of FGMs may be found in
[4]. Elastic optimized structures are analyzed in [5 – 18], while a few examples
of viscoelastic designer material analyses are presented in [19 – 27].

The general theory of designer viscoelastic materials whose properties are
optimized and tailored/engineered as inverse problems to perform specified ser-
vice task has been developed in [19]. It has been further previously established
[20] that in homogeneous viscoelastic materials the shape of the relaxation curve
is a major contributor to the material’s response performance. In particular, it
has been shown that Region C and and the ratio E0

E∞
of the relaxation modulus

(Regions A and E) as seen in Fig. 1 are the most influential in dictating material
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LIST OF SYMBOLS

aij , bijkl relaxation modulus coefficients
A∗k aerodynamic coefficients
Am coefficients of PDEs and IPDEs
BC boundary condition
cV D viscous mechanical dampping coefficient
C∗ijkl Cijkl compliances
C∗ijkln Cijkln compliance coefficients
D∗ D bending stiffnesses
D∗ijkln Dijkl bending stiffness coefficients
E∗ijkl Eijkl relaxation moduli
Eijkl0 E0 elastic Young’s modulus
E∗ijkln Eijkln relaxation moduli coefficients
ESD structural damping coefficient
FA aerodynamic force (lift)
F(x, t) functionally graded material distribution
FGM, EFGM, VFGM functionally graded material, elastic & viscoelastic
g, gw, gθ structural damping coefficient
IPDE integral partial differential equation
N summation limit in modulus, compliance Prony series
Nijkl in-plane force
P ,Q viscoelastic differential operators
PDE partial differential equation
Sm, S parameters to be optimized
t time
T temperature
u generalized displacement
V free stream air velocity
Vf flutter velocity
Vult maximum velocity causing material structural failures
w bending deflection
x{x1, x2, x3} Cartesian coordinates
x, y, z Cartesian coordinates
αr rigid body angle of attack
∆pCP cabin pressure
εkl strain components
ρ free stream air density
σkl stress components
τklmn relaxation time
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Figure 1: Relaxation
modulus regions

dissipation rates. Consequently, such relaxation modulus functions are tailored
through optimization of appropriate functionally graded viscoelastic materials
to produce the desired designer material performance. In case of composites,
for instance, this tantamount to tailoring stacking sequences, fiber orientation,
number of plies, properties of fibers and matrices, etc. Relaxation moduli are,
of course, highly temperature sensitive and performances are evaluated relative
to thermal operational demands.

Functionally graded elastic (EFGM) or viscoelastic (VFGM) materials are
essentially and fundamentally nonhomogeneous and anisotropic materials where
the spatial and/or temporal material variations are prescribed by specific man-
ufacturing protocols [25] or imposed through service temperature distributions.
These predetermined nonhomogeneous and anisotropic material property vari-
ations can be realized, for instance, by prescribing a priori deterministic or
random spatial changes in size, number, orientation, or materials of fibers in
composites during manufacture. Inclusion of nano materials in controlled quan-
tities into a polymer or metal matrix is another example of a composite VFGM.
Other examples such as use of successful irradiation techniques to produce non-
homogeneous EFGM are described in [28 – 32]. Additionally, viscoelastic ma-
terial properties can be strongly influenced in service by proper temperature
control and thusly comprise another form of FGM.

Passive control of static or dynamic deflections, stresses, etc., can, therefore,
be exercised by proper viscoelastic material selection and temperature control
(energy dissipation) and by advantageous positioning of diverse materials within
the structure (VFGM). Optimum combined configurations can then be sought
under prescribed constraints.

Failure probabilities and survival times or lifetimes based on specific failure
theories are used as the ultimate constraints associated with VFGM designer
materials. In the current instance, deterministic and stochastic failures based
on developments in [33] are used to predict composite panel delamination fail-
ures. Additionally, time dependent stability criteria, such as creep panel flutter
and buckling, are also considered. Of course, other constraints such as stress,
strains, deformations, panel creep buckling and flutter times, etc., could also be
prescribed.

Previous examples of aero-viscoelastic problems and structural control of lift-
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ing surface viscoelastic panels may be found in [34 – 39], where it is shown that
viscoelastic flutter velocities may be smaller or larger than the corresponding
elastic ones for identical geometries and mass distributions. Material capacity
for increased damping, and hence energy dissipation, does not necessarily lead to
higher flutter velocities. In these self-excited viscoelastic systems the answers lie
in the phase relationships between inertia, aerodynamic and viscoelastic forces.

While the problem formulated and solved in this pilot study has input re-
lating to lifting surfaces and aerodynamic noise, the analyses have with minor
modifications equal applicability to acoustic and hydrodynamic noise in sub-
marines and surface vessels as well as to ground transportation vehicles.

2. Analysis

2.1 General consideration

In a Cartesian system x = {xi}, i = 1, 2, 3, consider a linear viscoelastic flat
plate (panel) of constant mass m per unit length, thickness h and area A =
a ∗ b. The plate is subjected to lift due to airflow with free stream velocities
Ur in the x1-direction at an angle of attack α and due to motion contributions
from the entire lifting surface as well as from plate deflections. Lift forces are
further augmented by pressure fluctuations (aerodynamic noise) ∆p(x1, x2, t).
The standard small deflection plate theory assumptions are applied and the
linear viscoelastic constitutive relations are [40 – 42].

σij(x, t) =
t∫

−∞

E∗ijkl (Ξ) εkl(x, t′) dt′ +
t∫

−∞

E∗Tij (Ξ) αT (x, t′) dt′ (1)

or

εij(x, t) =
t∫

−∞

C∗ijkl (Ξ)σkl(x, t′) dt′ −
t∫

−∞

C∗Tij (Ξ) αT (x, t′) dt′ (2)

with
Ξ ≡ [x, t, t,′ T (x, t′),F(x, t′)] = (x, t, t′) (3)

For isotropic materials, each set of the 36 Eijkl and Cijkl reduce to two functions
each, while the ETij and CTij each coalesce into one other function. Alternately,
the constitutive relations may be written in the form

σij(x, t) = Eijkl(x, 0) εkl(x, t) +
t∫

0

Eijkl (Ξ) ∂εkl(x, t
′)

∂t′
dt′

+ Eij(x, 0) αT (x, t) +
t∫

0

ETij (Ξ) ∂ [αT (x, t′)]
∂t′

dt′ (4)

with similar expressions for the strains in terms of stresses. The Einstein tensor
notation is used though out with repeated symbols in pairs indicating summa-
tions, while underscored indices denote lack of summations over their range. For
an alternate formulation in terms of differential constitutive relations equations
more suitable for Runge-Kutta approaches see Appendix A.

The F(x, t′) ≡ Fijkl(x, t′) functions describe VFGM influences on mechani-
cal properties and may have anisotropic attributes in addition to their nonhomo-
geneous properties. The latter are prescribed by the creation of such properties
through selected manufacturing processes and/or by material property depen-
dencies on service temperatures. Thusly, anisotropic directionality may also
be imposed, while temperature variations T (x, t′) are separately governed by
thermal radiation, convection and/or conduction.
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The elastic-viscoelastic correspondence principle (analogy) can be satisfied
only if the constitutive relations (1) and (2) are convolution integrals, i.e.
E(Ξ) = E(x, t − t′). The latter condition limits the functions to F(x) and
T (x) [25, 43] such that

Ξ = (x, t− t′) if and only if F = F(x) (5)

In other words, even if the later two functions are both separable, i.e. F =
f1(t)f2(x) and T = f3(t)f4(x), the hereditary constitutive relation integrals are
still of the non-convolution type with Ξ = (x, t, t′). Furthermore, if the material
exhibits any aging characteristics [44 – 47], which are by definition inherently
time dependent, no correspondence principle can be achieved.

Additionally and independently, viscoelastic materials can exhibit other non-
homogeneities and anisotropies due to mixture, multiple dissimilar materials,
composite fibers, etc., as indicated by the explicit dependence of the relaxation
moduli and creep compliances on x and/or t in Eqs. (1) and (2).

In the eventual total scheme of non-homogeneous, isotropic or anisotropic
material properties in relation to stress, strain and deformation formulations all
such contributions, whatever their sources, carry equal significance. Therefore,
in analysis only specific spatial and temporal functionalities of each Eijkl or Cijkl
count and their origins become blurred and indistinguishable. In other words,
EFGM and VFGM and thermal property dependency problems fundamentally
reduce to formulations and analyses associated with elastic and/or viscoelastic
materials which have prescribed and distinct isotropic or anisotropic and non-
homogeneous properties [25].

If one chooses a generalized Kelvin model (GKM) or any other mathemati-
cal, mechanical or electrical model to describe or simulate viscoelastic behavior,
then the F and T functional dependence must be properly assigned to the in-
dividual parameters. In the case of varying temperatures, damping properties
– i.e. damper viscosities – are heavily influenced while the model’s elastic com-
ponents are relatively insensitive to temperatures. However, these elastic con-
tributions may have spatial inhomogeneities and anisotropies which are caused
by FGMs but independent of temperatures.

Temperature and VFGM dependent and strain independent relaxation mod-
uli can be expressed as Prony series [48]





Eijkl(x, t)

E∗ijkl(x, t)



 =

Eijkl∞(x, t) +
Nijkl∑

n=1





Eijkln(x, t)

Eijkln(x, t)
τijkln(x, t)





exp




t∫
− dζ

τijkln [x, ζ, T (x, ζ),F(x, ζ)]




︸ ︷︷ ︸
Xijkln(x,t)

(6)

with

Eijkl0(x, t) = Eijkl∞(x, t) +
Nijkl∑

n=1
Eijkln(x, t) (7)

and where Eijkl0 are the equivalent anisotropic elastic moduli and τijkln the re-
laxation times. When structural damping in the form of Coulomb friction [49] is
included due to dissipation in joints, the elastic moduli can be modified to read[
1 + ı gijkl(x)

]
Eijkl0(x, t). The gijkl are called structural damping coefficients

with a range of 0.005 to 0.05 [50] . It bears no relation to the gravitational
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constant universally designated by g. The relaxation moduli of Eqs. (6) may
then be rewritten as

Eijkl(x, t) =

[
1 + ı gijkl(x)

]
Eijkl0(x, t) +

Nijkl∑

n=1
Eijkln(x, t)

{
exp

[
Xijkln(x, t)

]
− 1

}
(8)

Non-homogeneous properties can be achieved by either temperature depen-
dent material properties, the presence of VFGM or both. Depending on the na-
ture of the temperature and/or VFGM spatial functions, such nonhomogeneities
may exist in either one or more xi direction. Material time dependence is sub-
ject to the usual viscoelastic time functions plus any changes directly induced
by temperatures and/or VFGMs. Viscoelastic plates will be exposed to (i) ma-
terial failures in time and to instabilities such as (ii) creep flutter and/or (iii)
creep buckling. Therefore, in order to define the failure primacy of any given
panel, one needs to establish which of these three modes will occur first, and at
what combinations of air speeds, frequencies and life or survival times.

For small deformations, the anisotropic, nonhomogeneous viscoelastic plate
governing relation is given by

L(w,D∗,F) =
t∫

−∞

{
∂2

∂x2
1

(
D∗1111

[
Ξ̂
] ∂2w(x, t′)

∂x2
1

)
+ 2 ∂2

∂x1∂x2

(
D∗1212

[
Ξ̂
] ∂2w(x, t′)

∂x1∂x2

)}
dt′

︸ ︷︷ ︸
viscoelastic bending resistance (T1A & T1B)

+
t∫

−∞

{
∂2

∂x2
2

(
D∗2222

[
Ξ̂
] ∂2w(x, t′)

∂x2
2

)}
dt′

︸ ︷︷ ︸
viscoelastic bending resistance (T1C)

−




t∫

−∞

D∗4

[
Ξ̂
](∂w(x, t′)

∂x1

)2
dt′

︸ ︷︷ ︸
in plane force due to length change

in x1 direction (T2)

+ NEX
11 (x2, t)︸ ︷︷ ︸

external force (T3)


 ∂

2w

∂x2
1

+ mp
∂2w(x, t)
∂t2︸ ︷︷ ︸

inertia effects
(T4)

−




t∫

−∞

D∗5

[
Ξ̂
](∂w(x, t′)

∂x2

)2
dt′

︸ ︷︷ ︸
in plane force due to length change

in x1 direction (T5)

+ NEX
22 (x1, t)︸ ︷︷ ︸

external force (T6)


 ∂

2w

∂x2
2

−




t∫

−∞

D∗6

[
Ξ̂
] ∂w(x, t′)

∂x1

∂w(x, t′)
∂x2

dt′

︸ ︷︷ ︸
in plane force due to angle change
between x1 & x2 directions (T7)

+ NEX
12 (x1, t)︸ ︷︷ ︸

external force (T8)


 ∂2w

∂x1∂x2

−




t∫

−∞

D∗7

[
Ξ̂
] ∂w(x, t′)

∂x1

∂w(x, t′)
∂x2

dt′

︸ ︷︷ ︸
in plane force due to angle change
between x1 & x2 directions (T9)

+ NEX
12 (x2, t)︸ ︷︷ ︸

external force (T10)


 ∂2w

∂x1∂x2
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+ a∗0 q sin





π

2αST




wing contribution
Eq. (10) (T11W)︷ ︸︸ ︷
AW (α, θ,W ) +

panel contribution (T11P)︷ ︸︸ ︷
arctan

(
1
Ur

∂w(x, t)
∂t

+ ∂w(x, t)
∂x1

)

︸ ︷︷ ︸
combined angle of attack due to deformed wing and panel








︸ ︷︷ ︸
lift forces (T11)

+ NP
11(x, t)∂

2w

∂x2
1︸ ︷︷ ︸

x1 piezo force (T12)

+ NP
22(x, t)∂

2w

∂x2
2︸ ︷︷ ︸

x2 piezo force (T13)

+ NT
11(x, t)∂

2w

∂x2
1︸ ︷︷ ︸

x1 thermal force (T14)

+ NT
22(x, t) ∂2w

∂x1∂x2︸ ︷︷ ︸
x2 thermal force (T15)

+ 2 NT
12(x, t) ∂2w

∂x1∂x2︸ ︷︷ ︸
thermal shear

force (T16)

+ ∂2MT
11

∂x2
2︸ ︷︷ ︸

x3 load due
to MT

11(T17)

+ ∂2MT
22

∂x2
1︸ ︷︷ ︸

x3 load due
to MT

22(T18)

+ 2 ∂2MT
12

∂x1∂x2︸ ︷︷ ︸
x3 load due
to MT

12(T19)

+

electric and magnetic controls︷ ︸︸ ︷
∂2ME

11
∂x2

2︸ ︷︷ ︸
x3 electric
load (T21)

+ ∂2ME
22

∂x2
1︸ ︷︷ ︸

x3 electric
load (T22)

+ ∂2MM
11

∂x2
2︸ ︷︷ ︸

x3 magnetic
load (T23)

+ ∂2ME
22

∂x2
1︸ ︷︷ ︸

x3 magnetic
load (T24)

=

∆p


x, t,

plate contribution︷ ︸︸ ︷
w,

∂w

∂x
,
∂2w

∂x∂t
,
∂w

∂t
,
∂2w

∂t2
,

wing contribution︷ ︸︸ ︷
α, θ,

∂θ

∂t
,
∂2θ

∂t2
,W,

∂W

∂t
,
∂2W

∂t2




︸ ︷︷ ︸
aerodynamic noise pressure (T20)

(9)

where the plate deflections are w = w(x, t) = w(x1, x2, t) and the wing deflec-
tions are θ = θ(x2, t) and W = W (x2, t) unless otherwise indicated. In term
T11, a∗0 is the slope of the lift curve, q the dynamic pressure and αST the stall
angle.

In the absence of chord-wise bending the panel effective angle of attack due
to wing contributions is

AW (α, θ,W ) =
fα(x2)=built in

function︷ ︸︸ ︷
αr(x2)− α0(x2) +

angle of
attack︷ ︸︸ ︷
α(x2)︸ ︷︷ ︸

rigid wing contributions

+

wing angle
of twist︷ ︸︸ ︷
θ(x2, t) +

wing bending velocity︷ ︸︸ ︷
arctan

(
1
Ur

∂W (x2, t)
∂t

)

︸ ︷︷ ︸
wing aero−viscoelastic contributions

(10)

and where

Dijkl

[
Ξ̂
]

=
h/2∫

−h/2

Eijkl [Ξ] x2
3 dx3 Dm

[
Ξ̂
]

=
h/2∫

−h/2

Eijkl [Ξ] dx3

m = 4, 5, 6, 7 Ξ̂ ≡ [x, t, t,′ T (x, t′),F(x, t′)] = (x1, x2, t, t
′) (11)

Eq. (9) represents the worst case aero-viscoelastic scenario where the lift T11
(including stall possibilities) and aerodynamic noise pressure T20 each are func-
tions of wing and panel bending and twisting deflections. For isotropic materials,
Eqs. (9) reduce in complexity as

ASDJournal (2012) Vol. 2, No. 3, pp. 1–31



∣∣∣ 8 Designer viscoelastic FGM

Figure 2: Sears
[98] Aerodynamic noise
spatial distributions
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D = Diiii and D∗ = D∗iiii (12)
with similar equalities for the other rigidities Dm or D∗m.

Thermal loads and moments are given by

NT
ij

[
Ξ̂
]

=

h/2∫

−h/2

= thermal stresses σT
ij︷ ︸︸ ︷

t∫

−∞

E∗Tij (Ξ) αT (x, t′) dt′ dx3 =
h/2∫

−h/2

= thermal stresses σT
ij︷ ︸︸ ︷

t∫

−∞

ETij(Ξ) ∂ [αT (x, t′)]
∂t′

dt′ dx3

(13)
MT
ij

[
Ξ̂
]

=

t∫

−∞

h/2∫

−h/2

E∗Tij (Ξ) αT (x, t′) x3 dx3 dt
′ =

t∫

−∞

h/2∫

−h/2

∂
[
ETij(Ξ) αT (x, t′)

]

∂t′
x3 dx3 dt

′

(14)
Aerodynamic forces are functions of angle of attack among other variables.

With the flow parallel to the x1–axis, angle changes will take place due to rigid
and flexible plate motions. In particular, Sears’ expression [98] in combination
with flexible plate input, yields for small angles of attack

∆p(x, t)︸ ︷︷ ︸
aero noise

(T20)

= <
{

∆pSe(x, t)
}

︸ ︷︷ ︸
rigid plate
(T20RP)

+ a∗0 q

[
∂w(x, t)
∂x1

+ 1
Ur

∂w(x, t)
∂t

]

︸ ︷︷ ︸
flexible plate with small angle of attack (T20FP)

(15)

where
<
{

∆pSe(x1, t)
}

= −
√

2 ρ0 Ur a
∗
3√

π σ1(1 +Mr)(ζ + 1)
⊗

{
cos(σ1 + k1 Ur t)

[
cos
(
Mr σ1

1 +Mr
(ζ + 1)

)
+ sin

(
Mr σ1

1 +Mr
(ζ + 1)

)]
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Figure 3: Coefficient of
viscosity

Case Thermal End Bending /
Expansion Restraints Shear

A αT (x3, t) 4 sides free pure bending
B αT (x1, x2, t) 4 sides free bending & shear
C αT = const. x3-direction motion bending & shear

at least one side restrained

Table 1: Influence of
thermal expansions

+ sin(σ1 + k1 Ur t)
[
− cos

(
Mr σ1

1 +Mr
(ζ + 1)

)
+ sin

(
Mr σ1

1 +Mr
(ζ + 1)

)]}

(16)
Spatial distributions and time amplitudes of ∆pSe, Eq. (16), are displayed in
Fig. 2 .

Inclusion of the flexible terms T20FP above produces a self excited system
where these additional contributions may be stabilizing or destabilizing depend-
ing on phase relations among the various terms of the governing equation (9).
These terms combine with the corresponding first derivatives on the left hand
side of (9) and modify their coefficients thereby fortifying or weakening stability
boundaries.

Viscoelastic plate creep buckling theory has its roots in elastic column buck-
ling analysis [51]. However, viscoelastic materials have memory and dissipate
energy continuously in time and, therefore, the loading histories of all loads
strongly influence the deformation path [52]. Consequently, Euler’s lateral in-
finitesimal disturbance concept is inapplicable to columns and not needed for
viscoelastic plates since they are exposed to lateral loads, such as T11 and T20,
producing deflections w(x, t) for t ≥ 0.

The relaxation moduli E and ET are considered temperature dependent,
thus rendering the material nonhomogeneous and effectively causing thermal
gradients to generate a VFGM. The exceedingly strong temperature influence
can be seem in Fig. 3, typically inducing one order of magnitude change in
coefficients of viscosity per 20o C. For thermo-rheologically simple materials
(TSM) a shift function aT may be introduced which in turn leads to a pseudo-

ASDJournal (2012) Vol. 2, No. 3, pp. 1–31
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Table 2: Bending due
to temperature distribu-
tions

Temperature Relaxation Bending
Function Modulus
T (x3, t) E[T (x3, t)]
even even no
even odd yes
odd even yes
odd odd yes

time ξ definition [40], [42]

ξ(x, t) =
t∫

0

aT [T (x, t′)] dt′ (17)

and transforms all time integrals to convolution ones in the ξ-space, such that

f̂1(x, ξ) =
ξ∫

−∞

Ê(x, ξ − ξ′) f̂2(x, ξ′) dξ′ =
t∫

−∞

E(x, t, t′) f2(x, t′) dt′ (18)

The shift function is generally expressed by [40], [42]

log [aT (T )] = −C1 (T − T0)
C2 + T − T0

(19)

where Cns are material property parameters and T0 a preselected reference
temperature where a(T0) = 1. While this permits expressing viscoelastic ma-
terial behavior in terms of master relaxation or compliance curves, it does not,
however, allow the use of integral transforms (Laplace, Fourier, etc.) in the
governing Eq. (9) when the temperature T is time dependent because of the
influence of ξ(x, t) on the x derivatives.

In small deformation column and plate theory one usually considers changes
in length or width to be negligible and the instantaneous dimensions Li(t) in the
xi-directions remain equal to the original unloaded lengths L0

i . If these changes
become appreciable, then a nonlinear problem results.

If the in-planel loads N (t) and/or the thermal loads N T remain normal to
the cross section during bending deformations then in essence they are follower
loads.

The plate length (width) changes due to in-plane loads are

Lsi(t) =
t∫

0

Lsi (t
′)∫

0

Nii(s,′ t′) +NT
ii (s,′ t′)

h
Cii[s,′ t, t,′ T (0, t′)] ds′i dt′ (20)

with
Nij = NEX

ij + NP
ij (21)

and where Cij(s, t) are the creep compliances of the plate material. The lengths
Lsi(t) are due to compressive/tension loads and represent the distances along
the deflected plate between its ends at the neutral axis in the si-directions.
There are additional components due to bending given by

Li(t)∫

0

dxi =

Lbsi
(t)∫

0

√
1−

[
dw(s, t)
dsi

]2
dsi (22)

The unloaded length due to initial imperfections w0(s) is similarly given by
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L0
i∫

0

dxi =

L0
si∫

0

√
1−

[
dw0(s)
dsi

]2
dsi (23)

If a plate end is free to move in the xi-direction, then the corresponding
NT
ij (t) = 0. The thermal bending moment MT

i (t) is non zero only if the kernel
of its integral is an odd function.

Viscoelastic initial conditions (IC) correspond to elastic solutions wE(x1, x2, t)
at t = 0 of equivalent problems with identical F(x, t), T (x, t) and boundary
conditions (BC) at si = 0 and Lsi , but with time independent elastic Young’s
moduli EE . Elastic relations are then obtained from modifications of all above
equations by the removal of all time integrals.

2.2 Deformations under pure thermal loads

It is, of course, possible to achieve a degree of passive control by material selec-
tion for best performance under independently mandated service temperatures.
However, it must be noted that the presence of thermal expansions is generally
accompanied by thermal stresses and strains and resulting in in plane thermal
loads N T as well as a high degree of material property dependence on temper-
ature. Consider a loading configuration where the applied axial load F (t) = 0,
the temperature is at most T = T (t) with thermal loads NT(t) 6= 0 and mo-
ments MT = 0 in Eqs. (13) and (14). Under these conditions N T (t) and w(s, t)
may each increase or decrease depending on the nature of the relaxation moduli
E(x, t) time integrals. This deflection dichotomy has stability implications.

As a simple illustrative example let the temperature be

T (t) =





T1

±T2 t
0 ≤ t ≤ ∞ T1, T2 > 0 (24)

resulting in viscoelastic thermal loads NT

NT(t)
α A

=





T1 E(t)

T2

(
±E∞ t2

2 +
N∑
n=1

En

{
τ2
n

[
±1∓ exp

(
− t

τn

)]
∓ t τn exp

(
− t

τn

)}) (25)

0 ≤ t ≤ ∞

which leads to exponentially decreasing NTs for constant temperatures and
a considerably more complicated thermal load for the second linearly increas-
ing/decreasing temperature distribution (Fig. 4). Note that for the second tem-
perature of Eq. (24) with a positive time rate, NT ≥ 0 starts out compressive
in time, peaks and eventually becomes tensile for T = T2 t. This sign rever-
sal is due to the fact that while T is increasing linearly in time, E decreases
exponentially necessitating an end shortening recovery. Note the contrast in
the behavior of the elastic equivalent NET represented by the second pair of
curves marked “EL”. For time independent temperatures, NET remains time
invariant, while for temperatures with linear time variations NET varies in like
manner. This is due to the intrinsic definition of the elastic thermal loads as
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Figure 4: Thermal in-
plane loads
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NET(t) = E0 α

h/2∫

−h/2

T (x, t) dx3 0 ≤ t ≤ ∞ (26)

indicating that the the only time variation of NET is due to T (x, t).
Stability considerations and initial conditions dictate that

0 < NT(0) < NE
cr (27)

in order to allow creep deflection development with time. Of course, as seen
from Tables 1 and 2, lateral plate deflections can be produced by NT(t) = 0
and MT(t) 6= 0.

3. Creep buckling, flutter and failure analyses

The classical creep buckling definition is

lim
t→tcr

{w(x, t)} → ∞ or lim
t→t∗cr

{
∂w(x, t)
∂t

}
→ ∞ (28)

However, in Refs. [52] to [56] it has been shown that small deflection linear
viscoelasticity analysis results in finite deflections for 0 < tcr, t

∗
cr <∞. Conse-

quently, alternate creep buckling definitions must be formulated. Two distinct
types based on (1) strain reversal in time and (2) on time dependent material
failure criteria have been offered.

In [57] it was proposed and successfully experimentally demonstrated that for
elastic plates the buckling load can be established by analyzing graphs of outer
plate fiber strains where compressive strains due loads and tensile strains due
to bending take place. (See also [58] and [59] for comprehensive treatments of
elastic and plastic buckling of thin-walled structures.) The elastic plate buckling
load NE

cr was defined as

lim
N→NEcr

∂
[
εEc (N ) + εEt (N )

]

∂N
→ 0 t = 0 (29)
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Figure 5: Viscoelastic
buckling and flut-
ter/divergence

This definition has been modified in Refs. [60] and [61] to read in the case of
creep buckling as

lim
t→t#cr

∂ [εc(t) + εt(t)]
∂t

→ 0 0 ≤ N < NE
cr and 0 < t#cr <∞ (30)

In the current case, one needs to change the N domain to 0 ≤ N11(t)+NP
11(t)+

NT
11(t) < NE

cr in order to incorporate piezoelectric and thermal load effects.
For a given lifting surface, flutter is defined in terms of two variables. namely

flutter velocities V EF or Mach numbersME
F and frequencies ΩEF . In linear elastic

and viscoelastic systems motion of the type

wmax(x, t) =
∞∑

m=1
exp

{[
Am(V,Ω) + ı Bm(V,Ω)

]}
t (31)

is possible. In linear aeroelasticity one seeks eigenvalues for which A(VF ,ΩF ) =
0, resulting in simple harmonic motion. The lowest value of V EF is known as the
elastic flutter velocity.

Since the elastic solutions form viscoelastic initial conditions at t = 0, vis-
coelastic flutter at time t = tF can only occur at some VF < V EF when

lim
t→tF

wmax(x, t) →∞ or lim
t→tF

∂wmax(x, t)
∂t

→∞ (32)

This condition can be satisfied either by failure of the series to converge or by
a single term becoming unbounded at t = tF . A schematic comparison of creep
buckling, flutter and structural-material failure is illustrated in Fig. 5 .

Viscoelastic failure criteria, such as ultimate stresses, degrade in time inde-
pendently of relaxation moduli and failures may occur before or after any creep
buckling instabilities manifest themselves. These are material failures which are
independent of creep buckling and define the life time of the structure desig-
nated as tLF . Consequently, tcr or t∗cr or t#cr may be greater, smaller or equal
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than tLF . Indeed, in Refs. [52], [62] and [63] the Shanley & Ryder’s [64] interac-
tion curve approach has been used to estimate column failures under combined
inelastic deterministic stresses.

Some failure mechanisms observed in composites are substantially different
from those seen in metals as for example delamination which is a phenomenon
unique to composites [65 – 70]. From a design analysis point of view, one needs
only to consider delamination onset because at that stage a structure has for
all practical purposes failed, particularly if it is a light weight flight structure.
In [68] an expression has been formulated for the temperature, moisture and
time dependency of uniaxial composite failure stresses. An extensive review of
available experimental composite failure data is presented in [71] where such
data is used to formulated deterministic and stochastic delamination failure
analyses. Experimental results indicate that uniaxial deterministic delamination
onset stresses in tension and shear obey laws of the type

σF
ij(t) =





σF
ij0 −∞ ≤ t ≤ tF2

σF
ij0 − dij log

(
t/tF4

)
tF2 ≤ t ≤ tF3

0 t ≥ tF3

(33)

where all parameters are material, temperature, moisture and load (tension,
shear, etc.) dependent (Fig. 8).

Failure criteria, however defined, are distinct from constitutive relations. For
the purposes of the present analysis the combined load formulation of [33] in
terms of stress invariants is used. The fundamental stress invariants for internal
stresses are

J1 = 1
3 σii J2 = 1

3 σij σij J3 = 1
3 σij σik σjk (34)

with similar expressions for failure stress invariants Ji in terms of uniaxial failure
stresses σFij

J1 = 1
3 σ

F
ii J2 = 1

3 σ
F
ij σ

F
ij J3 = 1

3 σ
F
ij σ

F
ik σ

F
jk (35)

The actual failure criteria are expressed as

3∑

n=1

(
J̃n
Jn

)cn
= ṽ and

3∑

n=1

(
J̃n
Jn

)cn
= Ṽ (36)

where ˜ indicate random variables and Jn are mean failure values. Failure will
occur whenever

Ũ = Ṽ − ṽ ≤ 0 (37)
Experimental results indicate that failure distributions are of the Weibull

type [69], [72 – 74] thus defining probabilities of failure as

PF (x, t) = 1− exp
{
−

[
Ũ(x, t)
κ

]γ}
(38)

where γ and κ are material property parameters. Since the stresses are functions
of x and t, it follows that the failure probabilities PF are also dependent on
position within the plate and on time. The life or survival time tLF , then,
corresponds to the largest value PF at a point xi = ai in a plate is defined by

PF (a, tLF ) = max [PF (x, t)] ≤ 1 (39)
In stochastic probabilistic structural failure analysis, one seeks similar points

or regions where PF (x, tLF ) = 1 or alternately the maximum probability value
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PF (x, tLF ) < 1 to indicate plate survival probabilities under a prescribed load
N(t) < NE

cr, the elastic critical load. The elastic critical load represents the
upper bound of permissible viscoelastic loads since the initial conditions are
elastic. A similar but distinct class of problems arises from the imposition of
the specification of design survival times tLFD each corresponding to a design
failure probability PFD(tLFD) ≤ 1, or conversely the prescription of a tLFD
with an attendant PFD(tLFD). It must, of course, also be remembered that the
creep buckling times tcr are unrelated to the survival times and each represents
a distinct definition of instability or failure conditions.

In the final analysis combinations of probabilities of failure and survival times
are the indicators of choice for geometric determinations and material selection.

4. Computational issues

The viscoelastic plate or panel governing relation (9), even in quasi-static or
solely elastic configurations, are too complicated due to their nonlinear geomet-
ric nature to be reducible to analytical solutions and numerical protocols need
to be applied. The various possibilities consist of:

• Reduction of spatial dependence through the application of collocation,
Rayleigh-Ritz, Timoshenko, Galerkin or like methods [75]

• Subsequent solution of the time integral-differential relations by Runge-
Kutta approaches [76].

• Alternately, finite element methods with numerical evaluation of the ma-
terial property time integrals can be undertaken [77 – 85].

• Use of the general elastic-viscoelastic analogy as described in [40] is un-
achievable for time dependent temperatures T (x, t) and FGMs F(x, t),
unless the approximate correspondence principles of [86] and/or [87] are
applied.

A solution of Eq. (9) presents special difficulties, in particular due to the
presence of the time integral which does not allow an analytical solution as is
the case for the nonlinear viscoelastic plate. A direct formal numerical approach
necessitates the storage of all function values at all x1 points for all preceding
times. This is obviously uneconomical in terms of computer storage as well as
computational real time usage and other approaches must be sought.

In connection with viscoelastic finite element analyses, a number of step
by step time approximations for the evaluation of convolution and of non-
convolution time integrals have been proposed [77 – 82]. These methods are
summarized and compared in Ref. [83]. The advantage of these approaches is
that only the previous time step needs to be retained for each time interval,
thereby drastically reducing the needed computer memory and required compu-
tational time. The disadvantage lies in the close relation between accuracy and
time step size. The accuracy can only be determined by varying the time step
sizes and comparing results until “convergence” takes place. In Refs. [71] and
[83] to [85] recurrence relations have been developed which involve only the two
previous time steps and yield solutions which are markedly more accurate and
require less CPU time than other methods.

In addition to the time integral computational difficulties, it must be re-
membered that the aero-viscoelastic panel problem is a self excited one due to
the interactions and interdependence of aerodynamic forces and displacements
[36]. Consequently, the latter must be continuously updated as the solution
proceeds in real time.
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4.1 Solution by Galerkin’s method

Galerkin’s method [75] consists of assuming expressions for the unknown func-
tions with arbitrary coefficients where each term independently satisfies pre-
scribed boundary conditions, such as for example

w(x1, x2, t) =
M∑

m=0
wm(t) Fm(x1, x2) (40)

Each function Fm(x1, x2) satisfies all BCs identically for all 0 ≤ m ≤M without
constraining any of the amplitude functions wm(t).

For a plate with four sides simply supported, an appropriate expression for
these functions is

w(x1, x2, t) =
Mw∑

m=1

Nw∑

n=1
wmn(t) sin

(
(2m− 1)π x1

a

)
sin
(

(2n− 1)π x2

b

)

︸ ︷︷ ︸
fmn(x1,x2)

(41)

Introducing expressions (41) into Eq. (9) and multiplying each term as indi-
cated results in

wmn(t)
a∫

0

b∫

0

Mw∑

k=1

Nw∑

l=1
fmn(x1, x2) sin

(
(2 k − 1)π x1

a

)
sin
(

(2 l − 1)π x2

b

)
dx1dx2

= wmn(t) Bmn 1 ≤ m ≤Mw 1 ≤ n ≤ Nw (42)

with similar expressions for the other terms of Eq. (9) involving x1 and x2
derivatives as well as time integrals and derivatives. Thus the system of gov-
erning partial-integral relations is reduced to Mw ⊗ Nw simultaneous second
order ordinary integral-differential relations in the unknown functions wmn(t)
which are amenable to solutions by finite difference approaches or Runge-Kutta
methods.

Note from the discussion in the previous Section that changes in plate widths
Lsi(t) and Li(t) of Eqs. (20) and (22) are part of the nonlinear solution and are,
of course, heavily influenced by the BCs. However, if one assume no changes
in width then, of course, the problem remains linear if additionally the in-plane
forces T5, T7 and T9 are also neglected in in the governing relation (9). However,
it has been shown in [88 – 90] that these in plane forces strongly influence elastic
flutter stability considerations.

4.2 Solution protocol

The general designer material protocol [19] consists of identifying the parameters
to be optimized and of assembling the governing relations, the boundary and
initial conditions and the desired constraints on the problem as shown schemat-
ically in the flow chart of Fig. 6 . The governing relations are solved analytically
and spatial and temporal dependences are removed by suitable procedures leav-
ing only the constant parameters as unknowns. The latter are then determined
subject to the selected constraints using Lagrangian multipliers resulting in a
combined optimized set.

The F(x) is an optimized spatial distribution function of properties for elas-
tic (EFGM) or viscoelastic (VFGM) functionally graded materials, which can be
represented, as a matter of convenience, in the closed domain of the deformable
body by a Fourier series of the type

F(x) =
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



(43)
where the A’s maybe complex while the b’s and c’s are real. The optional
presence of either FGM distributions can be used to further enhance the contri-
butions of the optimized material properties and essentially renders the material
non-homogeneous.

Designer materials, then, are in a class where the material property pa-
rameters Eijkln, τijkln, Aβγµ, b’s and c’s are optimized (tailored / engineered)
simultaneously subject to pre-assigned constraints. For fiber–matrix compos-
ites, these parameters also include functions describing distributions of fiber
orientations θor(x), number of plies Npl(x), number of fibers per ply Nfp(x),
volume fractions vfr(x) and stacking sequences st(x). These composite related
functions can be incorporated into the VFGM function F(x) of Eq. (43) above
or treated as separate functions or as additional constraints, such as

CC [θor(x), Npl(x), Nfp(x), vfr(x), st(x)] = 0 (44)

In either manner appropriate additional parameters are created for these com-
posite functions.

This parameter set is generically designated as S = {S1, S2, · · · , Sκ} and all
Sp are constants. Additionally, some of these properties may also be spatially
optimally distributed throughout part or all of the structure to obtain still
greater performance, cost permitting.

The behavior (response) of any deformable body problem is defined by one
or more governing relations1

L` (x, t,S,u) = 0 ` = 1, 2, · · · , L (45)

with L number of solution functions

u = u (x, t,S) = {u1(x, t,S, ), u2(x, t,S), · · · , uL(x, t,S)} (46)

which depend on body geometry, type of loads, boundary and initial conditions,
etc. These governing relations are not necessarily limited to structural consid-
erations alone, but could also describe for instance in the case of a flight vehicle
the pertinent aerodynamics, stability and control, mission requirements, etc.,
[19].

1For the present problem the L function is defined by Eqs. (9).
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The governing relations may also be subject to any number of constraints,
which can be written symbolically as

C
(
WEIGHT ,DIMENSION ,MORPHING, COST ,FAILURE ,

ST ABILIT Y, CONT ROL, · · · , x, t, S1, S2, · · · , Sκ,u
)

= 0 (47)

One or more constraint function C may be defined or prescribed.
The now augmented number of parameters Sp for p = 1, 2, · · · , κ, κ+1, · · · ,K

are constants and the following solution protocol may be adopted:

1. Since the parameters S and the solution functions u` are unknown, all
solutions must be formulated analytically, except for the final steps (Step
5 below) where the S parameters are determined.

2. Use Galerkin’s approach to determine the coefficients of the series solutions
to the governing relations L`

u`(x, t,S) =
K∑

k=1

L∑

l=1

M∑

m=1
B`klm(t,S) f`k(x1) f`l(x2) f`m(x3) (48)

where each and every function f`k, f`l and f`m identically satisfies the
boundary conditions. This procedure eliminates the x dependence of the
governing relations (45) to either integral-differential relations or ODEs in
time, such that

L̂` [t,S,B(t,S)] =
∫

V

L` [x, t,S,u(x, t,S)] f`k(x1) f`l(x2) f`m(x3) dV = 0 (49)

with B(t,S) = {B`klm(t,S)}, corresponding to û`(t,S), which results
from boundary conditions and the Galerkin integrals based on the original
governing relations (45).

3. Solve Eqs. (45) analytically and simultaneously to determine the L ⊗(
K + L+M

)
number of functions B`klm(t,S).

4. Eliminate the time variable t by an averaging or similar process

ũ`(S) =
tmax∫

0

û`(t,S) dt
tmax

(50)

where tmax is the largest expected cumulative operational time, i.e. the
lifetime of a component or a subsection such as a lifting surface or the
entire vehicle.
Alternately, the time variable may be referenced to a a specific time t̃ such
as when the deflections reach a global maximum at one û`(t,S)

max {ũ`(S)} = û`(t̃,S) (51)

Other procedures for eliminating time at this point in the analysis, such
as for instance least squares or collocation, also can be used. In the case of
flutter where the solutions are harmonic in time, the exponential functions
divide out in any linear system and the time dependence is automatically
removed from Eqs. (52).
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5. Employ Lagrange multipliers to solve for the unknown parameters Sp from
the K + Lq simultaneous relations

∂

∂Sp

{ L∑

`=1
ũ`(S) + λq C̃q(S)

}
= 0 (52a)

or

∂

∂Sp

{ L∑

`=1
ũ`(S) + λ1

Lq∑

q=1
C̃q(S)

}
= 0 (52b)

with p = 1, 2, · · · ,K + Lq ` = 1, 2, · · · , L

and S = {Sp} = { S1, S2, · · · , SK,︸ ︷︷ ︸
material, control and
constraint parameters

Lagrangian
multipliers︷ ︸︸ ︷
λ1, · · · , λLq}

The individual Lagrangian multiplier λq are a most important part of the
solution process itself as they act as “catalysts.” However, their actual
values are unimportant as only the Sp parameters dealing with proper-
ties, constraints and controls2 are sought for 1 ≤ p ≤ K. The original
differential-integral governing relations (45) have now been reduced to a
coupled system of K + Lq simultaneous ones in the unknown parameters
Sp, (1 ≤ p ≤ K + Lq), which are at best algebraic and at worst transcen-
dental.

5. Discussion

For the thin plates once the thickness h is agreed upon, the possibility of sub-
stantial contributions due to controlled variations of properties in the thickness
x3-directions is practically nil. This is due to the fact that any such variations
are “smoothed over” by the application of plane stress theory as exemplified by
the integrals of Eqs. (11) defining the D bending rigidities. A self-evident pro-
tocol calls for having as much structural material as far away as possible form
the neutral surface (NS) in order to produce the strongest and lightest plate.
In viscoelastic symmetric or un-symmetric bending the NS – not necessarily a
plane – with coordinates xi = ci is defined by

ε11(c, t) = ε22(c, t) = 0 on the NS (53)

where εii are the total strain components. It has been in shown in [91] that for
bending of cross sections with nonhomogeneous materials the NS will translate
and rotate in time relative to its initial (t = 0) elastic position, thus further
complicating optimum material selections which now become time sensitive.
While such optimal time functions are mathematically definable, they are prac-
tically unrealistic since it is difficult to produce such prescribed FGMs in time.
However, this type of analysis is most useful in establishing upper and lower
property bounds [25].

Composite plates on the other hand, because of fiber ply orientations, num-
ber and type of fibers in each ply, etc., inherently carry the possibility of fixed
material property optimization to satisfy a priori time independent constraints.
The latter can be represented by, but are not limited to, one or more of the
following: minimizing stresses, strains, displacements and failure probabilities,
or maximizing survival or life times.

Material property variations in the in-plane directions x1 and x2 directions,
inherently possess more pronounced capabilities to influence the constraints

2As defined by Eqs. (1) - (3) for constitutive relations, (43) for VFGM, (47) for constraints.
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mentioned previously. As an illustration consider the identical isotropic rect-
angular plate but with the x1 edges simply supported and both x2 ones free.
Eq. (41) then becomes

w(x1, t) =
M∑

m=1
wm(t) sin

(
(2m− 1)π x1

a

)
0 ≤ x1 ≤ a (54)

After application of Galerkin’s protocol, the governing relation (9) is reduced
to a set of ODEs in time only. In its simplest linear form with only terms T1,
T4, T11P and T20 present, it reads

A2m
d2wm
dt2︸ ︷︷ ︸

inertia (TG
4m)

+ A1m
dwm
dt

+ A0bm wm
︸ ︷︷ ︸
lift force on plate (TG

11mP)

+
t∫

−∞

A0am(t, t′) ∂wm(t′)
∂t′

dt′

︸ ︷︷ ︸
viscoelastic resistance force (TG

1m)

=

∆pm(t)︸ ︷︷ ︸
aerodynamic
noise (TG

20m)

1 < m ≤Mw (55)

with the integral terms TG1m reflecting viscoelastic material property contribu-
tions influenced by VFGM F and temperature T functions.

The influence of VFGMs and temperatures on material properties – relax-
ation moduli, Eq. (6) – manifests itself in three ways: (i) Equal changes in all
relaxation times τn resulting in left or right shifts of the modulus curves relative
to the time scale and curves maintain their shape, (ii) Changes in coefficient En
producing different curve shapes and (iii) Combinations of (i) and (ii). In elas-
tic materials increases in modulus values lead to decreases in displacements and
increases in response frequencies. In viscoelastic materials, the effect cannot be
generalized since it depends on the response-time paths defined by the specific
characteristics of the integro-differential relation (55) and must be examined in
a case by case manner.

For the conditions where both F and T are time independent functions, the
integrals TG1m reduce to convolutions ones and Fourier transforms (FT) can be
used to solve Eqs. (55), to yield upon inversion

wm(ω) = NUm(ω)
DEm(ω)

= D∗m(ω) Nm(ω) =⇒

wm(t) =
t∫

−∞

D∗m(t− t′) NUm(t′) dt′ (56)

where the time functions are the FT inverses of

NUm(ω) = ∆pm(ω) + A2m [ı ω wm(−∞) + ẇm(−∞)] + A1m wm(−∞) (57)

DEm(ω) = −ω2A2m + ı ω A1m + A0bm + A0am(ω) (58)

with from (6)

A0am(ω) = Am∞ +
N∑

n=1
Amn (ω, T,F) (59)

The initial conditions (ICs) are taken with the understanding that state
variables such as for instance um(t) are at rest at t = −∞. These conditions
cannot be met by steady state SHM for t ∈ [−∞,∞]. However it has been
shown in [92] that properly posed viscoelastic problems, because of their memory
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DEm Deflection Action

B

(ı ω)n
(n− 1)!
B tn

For larger B & n, w(t) decreases

B

ıω ± 1/τn
τn exp (∓t/τn)

B
For larger B & τn, w(t) decreases

Table 3: The influence
of VFGMs on deflec-
tions

capabilities, cannot admit non zero force and displacement ICs. Therefore, for
SHM to be achieved proper initial buildup protocols must be prescribed.

A parametric study can now be undertaken regarding the effects of VFGM
functions F on the wm(t)s. Consider the influence of increasingDm ∝

∫
E(x1, ω)

fm(x1) dx1 on the deflection component wm(t) for ∆pm(t) = const. Of course,
for decreasing DEms the converse is equally applicable as the reverse action
ensues.

The next step is to take the results of Table 3 and translate them to the
VFGM function F as indicated in Eqs. (6), (11) and (42) to produce the
“largest” A0mn and hence the “largest” Dm in (58). The individual m FT
terms of TG1m become

A0am(ω) =
a∫

0

N∑

n=1

En(x1)
ı ω + 1/τn(x1)

Mw∑

k=1
sin
(

(2m− 1)π x1

a

)
sin
(

(2 k − 1)π x1

a

)
dx1

1 ≤ m ≤Mw (60)

The En and τn dependencies on x1are due to the VFGM function F(x1) that
one would like to tailor to produce a “large” E(x1, ω) and consequently a “small”
w(x1, t). Unfortunately there is no known protocol to effect such a solution
directly. One must, therefore, use an inverse approach of a priori F function
selections, evaluate (60) and compare the results from (56). One approach is to
solve for the plate deflections with homogeneous material properties and note
the regions where maximum stress, deformation, etc., values take place. These
regions are, of course, also dependent on the aerodynamic noise ∆p(x1, x2, t)
and in-plane loads Nij(x1, x2, t) acting on the panel. Traveling waves from
0 ≤ x1 ≤ a will induce spatial and temporal moving maximum wave amplitudes
as can be seen in Fig. 2 . Even in the deterministic aerodynamic noise loading
as exemplified by the Sears model [98] the maximum amplitude panel location
of the noise moves in time relatively gently compared to the random waves of
Fig. 7 .

Once these regions are identified on the panel, one can then attempt to
locally reinforce the plate with VFGMs in those regions and thus produce larger
effective Eijkl(x, t) with proper spatial and/or temporal distributions tailored
to reduce deformations w(x1, x2, t) resulting in lighter structures. Alternately,
material properties could be tailored to reduce failure probabilities, retard creep
rates, increase lifetimes, etc., or their combinations as constraints.

A more general solution involving BCs with at least three restrained sides
is depicted in Fig. 9, where failure probabilities are the constraints. For a pre-
scribed set of delamination properties as exemplified by those of Fig. 8, designer
relaxation moduli with optimum regional properties as defined in Fig. 1 are
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Figure 7: Random
aerodynamic noise time
distribution
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lamination probabilities

sought through an inverse trial and error approach. Fig. 9 indicates that better
and more effective reductions in failure probabilities can be realized through
spatial property variations in both x1 and x2 directions rather than in either
one direction separately.

Fig. 9 is representative of the ultimate resolution of the posed problem, i.
e. reduction of failure probabilities to prescribed levels and/or extension of
structural lifetimes past expected service lives. This can be accomplished in
combination of (A) the judicious imposition of designer material properties, (B)
the distribution of appropriate non-homogeneous moduli (VFGM) and (C) the
selection of materials with advantageous failure envelopes. As the largest defor-
mations and stresses occur in the region of 0 ≤ x1 / .1, VFGM improvements
need to be accentuated there.

However, the underlying caveat to remember is that in self-excited systems
changes made intuitively in open loop systems may be destructive to closed ones,
i. e. more damping or increased stiffness will not necessarily improve stability,
failure or other critical conditions. Ultimately, aero-viscoelastic and aeroelastic
responses and behavioral patterns revolve primarily around phase relationships
between all aerodynamic, inertia, material, structural and applied contributory
forces.

Before closing, a more detailed examination of Fig. 10 is required. Here the
normalized deflections at the plate center are plotted against time in seconds.
Since Galerkin’s method is numerical no analytical convergence of the series
Eq. (41) can be undertaken. Convergence is, therefore, established by taking
successive numbers of terms for w(x, t) and comparing results in regions where
large deformations occur until no further changes are observed. The curves are
for 1 (black), 4, 9 and 25 (red) terms. As seen in Fig. 10, twenty-five terms
yielded stabilized deflection results. The symbolic Galerkin integral evaluations
and all computations were carried out on a PC using MATLAB™.

6. Conclusions

The following observations emerge from this study:

• EFGM and VFGM problems fundamentally reduce to formulations and
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Figure 10: Galerkin
convergence

analyses of elastic and viscoelastic materials having prescribed distinct
isotropic or anisotropic and non-homogeneous properties.

• The strong dependence of viscoelastic material properties on temperature
causes thermal gradients to generate de facto VFGM conditions.

• Viscoelastic axial thermal loads produced by boundary conditions and
thermal expansions radically differ from their elastic counterparts in mag-
nitude as well as in time histories.

• Higher temperatures degrade relaxation moduli and failure properties ear-
lier and, therefore, reduce plate lifetimes as well as augmenting failure
probabilities.

• Temperature distributions with or without boundary constraints can gen-
erate sufficiently large thermal bending deformations and stresses to cause
time dependent creep buckling and/or material failures without the pres-
ence of additional axial compressive loads. This is a condition of pure
thermal creep buckling.

• VFGM distributions in the thickness direction have limited utility because
of plate thinness, except for tension relief. However, judicious in-plane
distributions of VFGM can produce appreciable structural performance
enhancements and contribute to structural weight reductions.

• Selected temperature and/or VFGM distributions may stabilize motion or
extend dynamic plate lifetimes provided phase relationship are properly
altered to dissipate additional energy or beneficial axial thermal loads
are induced in opposition to the applied compressive in-plane plate loads.
However, ultimately the plate will fail in time unless its motion is totally
damped out before such failure envelopes are reached.

• In the final analysis, viscoelastic plates with materials that are less sensi-
tive under combined loads to either or both relaxation moduli or failure
property degradations will survive longer at lower failure probabilities.

• The ultimate purpose of the described inverse protocol is to design mate-
rials based on their properties and tailored to specific tasks, rather than
conventional design of structures and/or their components.
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