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Abstract
In this paper a non-intrusive adaptive stochastic spectral projection method is em-
ployed to predict limit-cycle oscillations (LCO) of an elastically mounted airfoil with
random structural properties. Due to the nonlinear dynamics of the aeroelastic system,
the use of a local stochastic representation based on a partition of the parametric space
is more appropriate than a global approximation. Here, the stochastic response of the
airfoil due to several uncertain structural parameters is expanded on a multi-element
generalized Polynomial Chaos basis. The parametric space is discretized and a cuba-
ture grid is prescribed on each element of the partition. A particular attention is paid
to the computation of the stochastic supercritical bifurcation obtained when a hard-
ening spring is considered as the nonlinear restoring pitching force. Numerical results
show how the probability density function of the peak pitch response, computed for
both supercritical and subcritical branches, is affected by independent multiple input
random parameters with bounded distributions. The efficiency and robustness of the
multi-element approach is investigated by means of analysis of h/p convergence and
comparison with Monte-Carlo simulations and various stochastic bifurcation behaviors
are investigated in details.

1. Introduction

The prediction of the flutter onset speed is of great importance in the field
of aeroelasticity. The corresponding loss of dynamic stability, which results in
unbounded vibrations of the structure, may lead to the failure of aircraft compo-
nents [7, 5]. When nonlinearities are present into the structural or aerodynamic
operator, the growth in the amplitude of the response is stabilized to limit cycle
oscillations (LCO) [15, 16]. These oscillations can be seen as the consequence of
the bifurcation from a stable solution to an oscillatory behavior of the nonlin-
ear dynamic system. Depending of the nature of the nonlinear restoring forces,
one can expect to get both supercritical (small amplitude LCO) or subcritical
(large amplitude LCO) when transitioning through the Hopf bifurcation point
[15, 16, 1, 23]. The former can lead to an excessive fatigue of the structure
while the latter results in destructive flutter. The influence of the structural
parameters on the deterministic LCO response of a pitch-and-plunge airfoil has
been widely studied for various types of structural nonlinearities (see [15] for an
extensive review).

Because LCO are inherently sensitive to small variations of both the struc-
tural parameters and initial conditions [15, 23], stochastic methodologies de-
voted to the propagation of uncertainties are promising candidates to obtain
more insights in the physical flutter mechanism and LCO [1, 25] with affordable
computational requirements.

Although accurate uncertainty quantification can be performed for steady
stochastic airfoil flows using stochastic spectral methods based on generalized
Polynomial Chaos (gPC) expansions [32, 10, 4], the prediction of strongly non-
linear problems such as stochastic limit-cycle oscillations requires the use of more
advanced stochastic methods. This is because global gPC approaches suffer from
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lack of robustness in the modeling of stochastic oscillating systems involving
long-term integration and/or discontinuities in the random space [33, 28, 1, 40].

Millman el al.[24] developed a stochastic projection method based on Fourier
Chaos expansion to compute the probability density functions (pdf) of the peak
LCO for both subcritical and supercritical branches of the bifurcation diagram
in the case of Gaussian distributions of the cubic spring coefficient in pitch and
the initial pitch angle.
This problem was also studied using non-intrusive B-spline stochastic projec-
tions [23], or Wiener-Haar and Wiener-Hermite expansions [1]. Stochastic LCO
and bifurcation diagram were explored by Wu et al.[41] by means of bounded
random variables with λ-pdf. The Gegenbauer polynomials were employed, as
a family of orthogonal basis for the function expansions, to compute the Hopf-
bifurcation point, the flutter speed and the angular frequency of the stochastic
system.
Witteveen et al.[40] proposed a probabilistic collocation method for limit cycle
oscillations (PCLCO) for the study of period-1 limit cycle oscillations with one
main frequency subject to randomness. This method, which is based on the use
of non-intrusive probabilistic collocation in conjunction with a time-independent
parametrization of the periodic response of the deterministic samples, was found
to be efficient for resolving the long-term stochastic effect of random parame-
ters. This approach was initially limited to period-1 oscillations of stochastic
simulations with a single random parameter. In Ref. [37] Witteveen and Bijl
developed a time-independent unsteady stochastic finite elements (UASFEi-ti)
method based on an extension of the stochastic finite element (ASFE) approach
with time-independent parametrization. Note that in Ref. [36], the unsteady
stochastic finite elements method based on interpolation with constant phase
(UASFE-cp) was found to be an interesting alternative to the UASFE-ti formu-
lation because it eliminates the parametrization error, resolves time-dependent
functionals and captures transient behavior of the samples. The discussion
about the total variation diminishing (TVD) properties in probability space of
the UASFE approach is presented in Ref. [39]. Recently, Witteveen and Bijl
[38] have successfully investigated the higher period stochastic bifurcation of a
nonlinear airfoil model. In particular, they have found that both randomness
in the cubic restoring coefficient in pitch and the initial pitch angle induce large
effects at the second stochastic bifurcation point.

A different approach was considered by Wan and Karniadakis [33] who de-
veloped a multi-element (ME) intrusive approach based on gPC expansions to
maintain the accuracy of the gPC for stochastic problems involving both long-
term integration and discontinuities in random space. The need for extensive
computational resources was limited by the use of criterion to perform the the
random space partition. The h/p-type convergence of the ME-gPC for a 2D
stochastic is presented in the case of a convection-diffusion problem for uni-
form random inputs and Legendre-Chaos. The generalization of the ME-gPC
to arbitrary random variables is presented in Ref. [34].

The scope of the present study is to assess if the non-intrusive ME-gPC
formulation is able to correctly predict the stochastic response of aeroelastic
systems in the presence of discontinuities in the random space; compared to
a Stochastic Finite Elements method, which implies a partition of the random
space but is limited to a fixed order expansion (e.g. linear or quadratic) [37, 36],
our method is adaptive in h (typical size of the element) and allows the use
of high p (typical order of the the local gPC expansion). The mathematical
formulation of the multi-element gPC method is briefly presented in section 2.
Then the numerical solutions of nonlinear aeroelastic governing equations are
described in section 3. The numerical ME-gPC results are discussed in details
in section 4.
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2. Uncertainty quantification numerical approach

2..1 Generalized Polynomial Chaos framework

The generalized Polynomial Chaos (gPC) method is a non-statistical method
used to solve stochastic differential (SDE) and stochastic partial differential
equations (SPDE) and has been used for numerous applications. It is a spectral
representation of a random process in terms of orthogonal basis functions; the
spatial and temporal evolutions of the basis coefficients providing quantitative
estimates of the modeled random process solution.

2..1.1 Non-intrusive formulation

The original polynomial chaos was first proposed by N. Wiener and re-introduced
more recently by Ghanem [8]. It employs the Hermite polynomials in terms of
Gaussian random variables as the trial basis to expand stochastic processes
in the random space. According to the theorem by Cameron and Martin [3]
such expansion converges for any second-order processes in the L2 sense. More
specifically, they have proved that any nonlinear functional of a brownian mo-
tion can be represented with mean-square convergence as a Wiener-Hermite
series. The importance of this theorem is that it extends obvious results from
finite-dimensional approximations (where various polynomials are complete with
respect to their respective measures), to an infinite-dimensional context (brown-
ian motion instead of a finite set of random variables). Even if there is no parallel
result for general measures (except for the Poisson and binomial measure [29]),
Xiu et. al [42] have proposed a generalization of the original Hermite-chaos.
Their representation employs different types of orthogonal polynomials from
the Askey family [29] and can deal efficiently with non-Gaussian random inputs
in many cases, e.g. [21, 35, 22].

Let (Ω,F , P ) be a probability space. Let ξ = (ξ1, . . . , ξd) be a Rd-valued
continuous random variable, where d ∈ N. Any second-order random process
u(ω) can be expressed by gPC as

u(ω) =
M∑
i=0

ûiΦi(ξ(ω)) (1)

where ω is the random event and Φi(ξ(ω)) denotes the gPC basis in terms of
the random variable ξ. The total number of modes M is determined by the
dimension d of ξ and the order of the local gPC expansion P

M + 1 =
(P + d)!
P !d!

(2)

The family {Φi} is an orthogonal basis in L2(Ω,F , P ) with orthogonality rela-
tion

E[ΦiΦj ] = E[Φ2
i ]δij (3)

where E denotes the expectation with respect to the probability measure dP (ω) =
f(ξ(ω))dω. Here, we focus on a non-intrusive approach where the gPC coeffi-
cients are obtained from Galerkin projection of the stochastic solution directly
onto each member of the orthogonal basis chosen to span the random space:

ûi =
E(u(ξ),Φi(ξ))

E(Φ2
i (ξ))

for i = 0, ...,M. (4)

In this study, the expectations are evaluated thanks to numerical cubatures
with a number of points which is chosen a priori depending on accuracy and cost
requirements. This choice will be motivated in the next section. This approach
is very flexible as it does not require modifications to the existing deterministic
solver.
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2..1.2 Numerical quadratures

The evaluation of Eq. 4 is equivalent to computing multi-dimensional integrals
over the stochastic domain. Different ways of dealing with high-dimensional
integrations can be considered depending on the prevalence of accuracy versus
efficiency. A convenient approximation through numerical cubature consists in
replacing the integral by a finite weighted sum of the integrand values taken at
some chosen points.

Among the different quadrature rules available we have chosen Gauss type
quadrature formulas [9, 31] in which point locations and corresponding weights
are directly based on the probability measure appearing in the expectation com-
putation, Eq. 3. Gauss quadratures are known for their high level of polynomial
exactness : i.e. a N -points rule makes it possible to integrate exactly polynomial
functionals up to order (2N − 1).

In this study, we construct our cubature based on full tensor products of
Gauss-Legendre one dimensional quadrature rules. This is not too costly as our
number of random dimensions is small. We insist on the fact that the determin-
istic solver will compute/provide the solution output at those known quadrature
points and not at randomly selected locations. The number of quadrature points
to use will depend on the regularity of the function to integrate. First the known
polynomial exactness of our cubature makes it possible to predict the number
of points needed to evaluate the inner products involved in Eq. 3. Next, we
increment a posteriori the number of grid points (if required) by carrying out a
convergence analysis of the solution, e.g. Fig. 3. This is due to the (possibly)
non-polynomial nature of the solution.
When the number of grid points in multi-dimensions d becomes too large, one
should not use a grid based on the full tensor product of one-dimensional grids.
An alternative is to use sparse quadratures which require less quadrature points.
For instance, the sparse quadrature based on Smolyak algorithm [30] has the
advantage of remaining accurate with a convergence rate depending weakly on
the number of dimensions.

2..2 Adaptive ME-gPC formulation

It is well known that although global gPC can achieve exponential convergence
for smooth problems, it may converge slowly or even fail to converge in case
of discontinuities (such as strong shocks) or steep fronts in random space [28].
In the following, we closely follow the mathematical framework proposed by
Wan and Karniadakis [33] to overcome these limitations. We introduce the
scheme of the adaptive multi-elements generalized Polynomial Chaos (ME-gPC)
method: partition of random space, construction of orthogonal polynomials and
an adaptive procedure in order to deal with these problems.

2..2.1 Random space partition

The goal in the following is to represent the stochastic solution in a partitioned
random space. To this end, we will have to construct a piecewise polynomial
basis, orthogonal with respect to the local probability distribution. We will first
define the partition space, then derive the conditional probabilities, and finally,
we deal with the ME-gPC approximation.

We assume that ξ is a random variable defined on B = ×di=1[ai, bi], where
ai and bi are finite in R and the components of ξ are independent identically-
distributed (i.i.d.) uniform random variables. We define a N−element partition
D of B as

D =


Bk = [ak,1, bk,1)× [ak,2, bk,2)× · · · × [ak,d, bk,d]
B =

⋃N
k=1Bk

Bk1
⋂
Bk2 = ∅, if k1 6= k2

(5)
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where k, k1, k2 = 1, 2, · · · , N . Based on the partition D, we define the following
indicator random variables

IBk =
{

1 if ξ ∈ Bk,
0 otherwise. k = 1, 2, · · · , N. (6)

Using Bayes’ rule, we define a new random variable ξk : I−1
Bk

(1) 7→ Bk on the
probability space (I−1

Bk
(1),F ∩I−1

Bk
(1), P (·|IBk = 1)) subject to a conditional pdf

f̂k(ξk|IBk = 1) =
f(ξk)

Pr(IBk = 1)
(7)

in each random element Bk, where Pr(IBk = 1) > 0.
Let u(x, t; ξ) ∈ L2(Ω,F , P ) denote a second-order space-time related ran-

dom field. For simplicity, we may drop x and t. To approximate a random field
u(ξ) using ME-gPC, we expand the random field spectrally in each element
Bk, then re-construct the entire random field by the following proposition. Let
ûk(ξk) be the local polynomial chaos expansion in element Bk. The approxi-
mation on the entire random field can be defined as

ur(ξ) =
N∑
k=1

ûk(ξk)IBk =
N∑
k=1

M∑
j=0

ûk,jΦk,j(ξk)IBk (8)

which converges to u(ξ) in the L2 sense, in other words,∫
B

(ur(ξ)− u(ξ))2f(ξ)dξ → 0, as M →∞. (9)

By Bayes’ rule and the law of total probability, any statistics can be obtained
as∫

B

g (u(ξ)) f(ξ)dξ ≈
N∑
k=1

Pr(IBk = 1)
∫
Bk

g (ûk(ξk)) f̂k(ξk|IBk = 1)dξk (10)

where g(·) ∈ L1(Ω,F , P ) is a functional of random field u(ξ).

2..2.2 Local orthogonal polynomial basis

With classical gPC formulation, we usually use Legendre polynomials for the
basis when we deal with uniform distributions. For the multi-element approach,
one has to build orthogonal polynomials with respect to the local distribution
(see Eq. 7) within the element of interest. This step can be problematic for
some distributions, but becomes obvious for uniform/Legendre discretization.
In this case, the local polynomials to the element remain Legendre polynomials
and only a scaling is necessary to map the element to a standard element of
reference.

2..2.3 Sensitivity based adaptivity

Let us define the local solution variance given by gPC representation with order
P

σ2
k,p =

MP∑
j=1

û2
k,jE[Φ2

k,j ] (11)

while the approximate global mean ū and variance σ̄2 can be expressed as

ū =
M∑
k=1

ûk,0 Pr(IBk = 1), σ̄2 =
M∑
k=1

[
σ2
k,p + (ûk,0 − ū)2

]
Pr(IBk = 1) (12)
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Figure 1: Two-degree-
of-freedom pitch-and-
plunge airfoil model
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We measure the decay rate of the relative error of the representation in each
element as

ηk =

∑MP

i=MP−1+1 û
2
k,iE[Φ2

k,i]

σ2
k,p

(13)

Based on ηk and the probability Pr(IBk = 1), we decompose the current random
element, if the following criterion

ηγk Pr(IBk = 1) ≥ θ1, 0 < γ < 1 (14)

is satisfied, where γ and θ1 are prescribed constant parameters. In order to
maintain an affordable number of total elements for problems involving multiple
random variables, we select the most sensitive random dimensions based on the
following criterion developed by Wan and Karniadakis [33]:

ri =
û2
i,PE[Φ2

i,P ]∑MP

j=MP−1+1 û
2
j E[Φ2

j ]
, i = 1, 2, · · · , d (15)

where we neglect the subscript k for clarity and the subscript ·i,P denotes the
mode consisting only of random dimension ξi with polynomial order P . All
random dimensions which satisfy

ri ≥ θ2 · max
l=1,··· ,d

rl, (16)

will be split into two random elements in the next step while all other random
dimensions remain unchanged.

3. Deterministic aeroelastic model and solvers

In this study, we consider a typical section airfoil model subjected to a two-
degree-of-freedom motion with plunge displacement of the elastic axis h and
pitch angle α (about the elastic axis). The additional mechanical parameters,
which are represented in Fig. 1, are the static unbalance xα, and the non-
dimensional distance between the mid-chord and the elastic axis ah.

The coupled bending-torsion equations of motion can be written in non-
dimensional form as follows [13]

ξ,, + xαα
,, + 2ζξ

ω̄

U∗
ξ, +

( ω̄

U∗

)2

kξξ = − 1
πµ

CL(τ) (17)

xα
r2α
ξ,, + α,, + 2

ζα
U∗

α, +
(

1
U∗

)2

k(α) =
2

πµr2α
CM (τ) (18)

where ξ = h/b denotes the nondimensional displacement of the elastic axis with
half-chord b, rα is the radius of giration about the elastic axis, µ represents the
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mass ratio, the viscous damping coefficients in pitch and plunge are ζα and ζξ
respectively, and ω̄ = ωh/ωα is the frequency ratio computed from the uncoupled
plunging ωh and ωα frequencies of the undamped motion. The nondimensional
velocity is determined as U∗ = U/(bωα) and the ′ refers to differientiation with
respect to the nondimensional time τ = Ut/b.

The aerodynamic operator is described through the lift and the pitching mo-
ment coefficients CL(τ) and CM (τ). For an incompressible flow over an oscillat-
ing airfoil undergoing arbitrary small-amplitude motions, we use the unsteady
linear aerodynamic model given by Fung [7]

CL(τ) = π(ξ,, − ahα,, + α,) + 2π{α(0) + ξ,(0) + [
1
2
− ah]α,(0)}φ(τ) (19)

+2π
∫ τ

0

φ(τ − σ)[α,(σ) + ξ,,(σ) + (
1
2
− ah)α,,(σ)]dσ

CM (τ) = π(
1
2

+ ah){α(0) + ξ,(0) + (
1
2
− ah)α,(0)}φ(τ)

+π(
1
2

+ ah)
∫ τ

0

φ(τ − σ){α,(σ) + ξ,,(σ) + (
1
2
− ah)α,,(σ)}dσ

+
π

2
ah(ξ,, − ahα,,)−

π

2
(
1
2
− ah)α, − π

16
α,, (20)

The Wagner function φ(τ) is computed using the two states approximation from
R.T. Jones [11]

φ(τ) = 1−Ψ1e
−ε1τ −Ψ2e

−ε2τ (21)

with Ψ1 = 0.165, ε1 = 0.0455, Ψ2 = 0.335 and ε2 = 0.3.
Finally, the highly nonlinear behavior of the airfoil motion is obtained by

modeling the pitching restoring forces k(α) such that [24]

k(α) = kα1α+ kα3α
3 + kα5α

5 (22)

where the stiffness coefficients kαi (i = 1, 3, 5) can be considered either as de-
terministic parameter or random variables.

The governing equations of motion result in a set a two second-order differ-
ential equations whose coefficients are functions of the system parameters. See,
for example, Lee et al.[15] for the expression of these coefficients in the case
where kξ = kα1 = 1. As far as the time-domain formulation of the problem is
concerned, the governing equations of motion are re-arranged in a set of eight
first-order ordinary differential equations [15] which is solved using an explicit
fourth-order Runge-kutta time-integration scheme [13, 26, 18, 41, 40, 27].

For oscillatory motions dominated by the first harmonic, we compute the
LCO amplitude using the 1st order harmonic balance procedure developed by
Lee et al.[14]. Toward this end, the governing equations are formulated in
frequency-domain by means of the following decomposition [14]

α(τ) = a1sin(ωτ), ξ(τ) = e1sin(ωτ) + f1cos(ωτ) (23)

Inserting the previous relations (Eqs. 23) in the governing equations (Eqs 17, 18)
and collecting the coefficients of sin(ωτ) and cos(ωτ) gives a nonlinear system
of fourth equations of a1, e1, f1 and ω. For the particular case where ah = −0.5
and kα5 = 0, Lee et al.[14] derived a sixth-degree polynomial equation for the
frequency parameter ω. Then the expression of the amplitudes of the plunge and
pitch motions can be computed analytically. Here, the harmonic balance solver
of Ref. [13] was slightly modified in order to account for parametric studies of
the linear spring coefficients kξ and kα1 . The use of more advanced frequency-
domain approaches such as incremental harmonic balance methods [12, 2] and
high-order or high-dimensional harmonic balance methods [17, 18, 20, 19] is
beyond the scope of the present study.

ASDJournal (2010) Vol. 2, No. 1, pp. 3–22
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Both the Runge-Kutta and the harmonic balance solvers are coupled in this work
with the ME-gPC method but the latter will be preferred for simulations with
period-1 LCO and hardening-spring nonlinearity because of its computational
efficiency and accuracy in the prediction of LCO amplitudes.

4. Uncertainty quantifications of LCO

In this study, the quantity of interest is the peak pitch amplitude αA. However,
similar stochastic analysis may be conducted on the LCO frequencies or on
the peak plunge amplitude since the ME-gPC formulation is applicable to any
outputs delivered by the deterministic solver.

Unless otherwise specified , the values of the deterministic parameters used
for the numerical results are taken as [13]

rα = 0.5, xα = 0.25, ω̄ = 0.2, µ = 100 (24)
ah = −0.5, ζα = 0, ζξ = 0 kα5 = 0

The coefficients describing the nonlinear torsional stiffness are considered as
random parameters with bounded distributions. Stochastic results are analysed
by means of the response surface, statistical moments and pdf of the peak pitch
amplitude αA since nonlinearities were introduced in the torsional restoring
forces only.

Millman et al. in [23, 24] have studied the influence of uncertainties as-
sociated to the initial pitch angle α(0) and cubic torsional stiffness term kα3

onto the stochastic LCO. In this study, deeper investigations are proposed by
means of the analysis of several stochastic configurations: Case-1 is devoted to
the study of cubic torsional stiffness randomness in the presence of supercritical
bifurcations. Then, the effect of combined uncertainties in both the linear kα1

and cubic kα3 torsional stiffness terms is investigated in case-2. The ability of
dealing with realizations ranging from the subcritical to the supercrital branches
is demonstrated in case-3. Finally, case-4 is considered to perform a sensitivity
study of the subcritical peak LCO to combined randomness in linear torsional
stiffness and the initial pitch angle.

4..1 Case-1: effect of randomness of the cubic torsional stiffness term

In order to verify the correct implementation of the coupling procedure between
gPC and the deterministic harmonic balance aeroelastic solver, we consider first
the case of a single uncertainty in the cubic torsional stiffness kα3 . The input
random variable is then expressed in standard form

kα3 = k̄α3 + σkα3
ξ1 (24)

with k̄α3 = 3 and σkα3
= 0.75 and ξ1 is a random variable following a uniform

distribution with zero mean and unit variance. It is well known that the influ-
ence of kα3 does not affect the onset of the flutter boundary [15, 41]. Therefore,
the use of a multi-element approach is not necessary in this case. The stochas-
tic simulation was performed using a 8th order gPC expansion. The harmonic
balance solver was considered in order to prevent the deterministic errors from
masking the global error of the stochastic gPC representation.

Fig. 2a depicts the pdf isocontours of the pitch amplitude αA for nondi-
mensional speeds ranging from U∗ = 6.1 up to U∗ = 7. Here, we use an 8th
order gPC expansion to evaluate the pdfs. The pdf contours are normalized at
each streamwise location such that the maximum probability density is always
unity. This is done because we are more interested by the distribution of the
strongest gradients and most probable solutions than by the actual probability
magnitudes. Keeping in mind that kα1 was modeled using a uniform random
distribution, it is interesting to note that the pdf of αA is not uniform. Further-
more, the maximum values of the pdf are always obtained for the lower values of
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the possible range of solutions (corresponding to the red color in the pdf). One
may also remark on Fig. 2a that the spread of the stochastic solution increases
with U∗.

Fig. 2b presents a comparison of the solution variance of the peak pitch
angle σ2

αA computed using gPC and Monte-Carlo simulations with NMC = 106

samples. The agreement is excellent for the whole bifurcation diagram (U∗ ∈
[6.4, 7]) and the linear growth of σ2

αA with the bifurcation parameter U∗ is clearly
observed.

Fig. 3 shows the convergence of the solution variance of αA both with respect
to the polynomial order P and the number of quadrature points Nq per random
direction.

The reference solution is taken to be the most resolved gPC results obtained
using P = 8. The straight lines (here, relative error in variance) in semi-log
vertical axis plots confirm the spectral (exponential) P -type convergence of the
representation for this type of smooth response.

4..2 Case-2: Influence of combined uncertainties in the linear and cubic tor-
sional stiffness terms

Next, a stochastic problem with two random dimensions is investigated by means
of combined uncertainties in the linear and cubic torsional stiffness terms with
k̄α1 = 1 and σkα1

= 0.1. The mean value and the standard deviation of kα3

remains unchanged (k̄α3 = 3, σkα3
= 0.75).

The response surfaces displayed on Fig. 4 are constructed using gPC with
P = 15 and ME-gPC with P = 3. The value of U∗ = 6.34 was selected such
that the corresponding response surface presents a discontinuity in the random
space driven by kα1 . Although gPC is able to predict the global behavior of
the response (Fig. 4a), it fails in accurately capturing the sudden change in
the response, even when a high polynomial order is employed (P = 15). Note
also that the response surface presents non-physical oscillations around the sta-
tionary state obtained for kα1 = 1 up to kα1 = 1.1. On the other hand, the
multi-element solver based on a low gPC expansion (P = 3) raises immedi-
ately these drawbacks by successively refining the random elements around the
discontinuity located at kα1 = 0.98 (Fig. 4b).

The first two statistical moments of the peak amplitude of αA present a good
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Figure 4: Case-2: Com-
parison of αA response
surfaces between gPC and
ME-gPC for U∗ = 6.34

(a) gPC (P = 15) (b) ME-gPC (P = 3)

Table 1: Mean and
variance of αA due to
uncertainties in kα1 and
kα3 by Monte Carlo
simulations (MC) and
a 3rd order adaptive
multi-element generalized
Polynomial Chaos (ME-
gPC) expansion with
θ1 = 10−3, θ2 = 0.5 and
U∗ = 6.34

U∗ method Cost (NMC or NgPC) ᾱA σ2
αA

6.34 MC 103 4.912 24.639
MC 104 4.947 24.273
MC 105 5.011 24.246
MC 106 5.026 24.309
MC 107 5.024 24.288
gPC 432 5.024 24.285

agreement with Monte-Carlo simulations as reported in Table 1.
The successive steps in the refinement procedure of the stochastic grid are il-

lustrated in Fig. 5 for the case U∗ = 6.34. The cubature points of the stochastic
grid for each element are represented using green symbols when the adaptivity
criterion (Eq. 14) is satisfied. Otherwise, red symbols are used and the refine-
ment process in the corresponding element is performed according to Eq. 16.
Here, we have used nq = P + 1 quadrature points along each random direction
based on polynomial accuracy requirement.

We notice that elements are mainly refined around the region of low regular-
ity of the solution (i.e. for kα1 ≈ 1.025) as expected. Moreover, more refinement
occurs along the kα1 than the kα3 direction, which makes sense considering the
different sensitivities of the solution to these two parameters . Finally, Fig.
5d reveals that 8 grid-levels are required by ME-gPC to satisfy the imposed
adaptivity criterion for all random sub-elements. The final total number of el-
ements is N = 15 for this level of resolution and the corresponding number
of cubature points or samples is NgPC = 432. Here, NgPC refers to the total
number of deterministic runs required by the adaptive approach, including the
runs generated at each intermediate step.

Next, the bifurcation diagram of the nonlinear stochastic aeroelastic model
is explored by repeating the ME-gPC procedure for different non-dimensional ve-
locities. Fig. 6 shows the response surfaces of αA obtained for U∗ = [5.5, 6.23, 6.61, 7].
The ME-gPC formulation is found to be very robust. Indeed, all types of re-
sponse: purely deterministic (Fig. 6a ), irregular (6b) and smooth response
surfaces (Fig. 6b and Fig. 6c) are accurately captured using the same set of
numerical parameters.

Getting to the physical analysis of the stochastic LCO, one can immedi-
ately observe from the pdf isocontours of αA (Fig. 7) that the behaviour of
the stochastic bifurcation can be divided into three distinct regions: a pre-
bifurcation region characterized by a Dirac delta-type function at αA=0 deg,
meaning that damped oscillations are always obtained; a region for U∗ > 6 that
shows that it is possible to observe LCO; a post-bifurcation region for U∗ > 6.6.
In the second region, the value of U∗ = 6 indicates that the flutter onset of the
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(a) level 2: N = 2 (b) level 4: N = 7

(c) level 6: N = 13 (d) level 8: N = 15

Figure 5: Case-2: Illus-
trative examples of the
ME-gPC parametric grid-
refinement process for the
αA response surface at
U∗ = 6.34 (red cubature
points indicate that cri-
terion of Eq. 14 is not
satisfied in the random
element of interest, and
that refinement needs to
be performed). Only in-
termediate levels of refine-
ment are presented.

(a) U∗ = 5.5 (b) U∗ = 6.23

(c) U∗ = 6.61 (d) U∗ = 7

Figure 6: Examples of
converged ME-gPC re-
sponse surface obtained
for different reduced ve-
locities U∗.
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Figure 7: Case-2: ME-
gPC pdf isocontours
(right) and corresponding
error bars (left) of αA due
to combined uncertainties
in kα1 and kα3
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Figure 8: Case-2: (a)
ME-gPC pdf of αA pro-
files obtained with P = 3
for different reduced ve-
locities and (b) compari-
son between ME-gPC and
MC (NMC = 106 sam-
ples) standard deviation
results
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stochastic simulations is approximatively 3.2% lower than that of the flutter
speed obtained with deterministic kα1 . The stochastic bifurcation is defined
approximatively by U∗ ∈ [6, 6.6]. Note that for U∗ ∈ [6.3, 6.7] the mean value
ᾱA is lower than ᾱA obtained with only uncertain kα3 . In the post-bifurcation
region (U∗ > 6.6) the mean values of αA are similar for all simulations.

Typical plots of the pdf obtained in the bifurcation region (U∗ = 6.23 and
U∗ = 6.61) are presented in Fig. 8a. One may notice on the shape of the
pdf that both the Dirac delta-type function of the stationary branch and the
local maximum due to the probability to capture stable LCO are visible. We
also remark that the pdf obtained for the post-bifurcation regime (say U∗ = 7
as shown in Fig. 8a) is not symmetric. This is the signature of the system
nonlinearity.

Next, we look at the αA solution variability depending on the reduced ve-
locity. ME-gPC results are compared with MC results and show very good
agreement for both stochastic bifurcation and post-bifurcation regimes (Fig.
8b). Quantitative comparison for U∗ = 7 is reported in Table 2 where it has
been verified that ME-gPC results are correctly converged. It is also interest-
ing to note that the plots of the standard deviation of αA against U∗ strongly
differs depending on the nature of the parametric uncertainties. Indeed, we
have observed that σ2

αA growths linearly with U∗ in the case of a single random
parameter kα3 (Fig. 2b). However, Fig. 8b shows that when a stochastic bifur-
cation is present (Case-2 with random kα1 and kα3), the αA std increases in the
bifurcation region and reaches a maximum around U∗ = 6.5 before to decrease
when the stable LCO regime is established.

In terms of cost, the total number of cubature points NgPC needed by the
adaptive ME-gPC approach depending on the chosen polynomial order P is

Table 2: Mean and vari-
ance of αA for U∗ = 7
due to uncertainties in kα1

and kα3 by Monte Carlo
simulations (MC) and a
3rd order adaptive ME-
gPC expansion with θ1 =
10−3, θ2 = 0.5.

U∗ method Cost (NMC or NgPC) ᾱA σ2
αA

7 MC 103 17.476 7.513
MC 104 17.420 7.749
MC 105 17.419 7.818
MC 106 17.418 7.839
MC 107 17.421 7.845
gPC 144 17.421 7.845
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(a) P = 2 (b) P = 3

(c) P = 4 (d) P = 5

Figure 9: Case-2:
Growth of the total num-
ber of ME-gPC elements
cubature points NgPC
versus U∗ and P .

plotted against the bifurcation parameters U∗ in Fig. 9.
We notice that the number of samples is dictated by the sensitivity of the

stochastic solution. Indeed, NgPC increases in the stochastic bifurcation region
until the probability of damped oscillations disappears completely (U∗ ≈ 6.6).
Then, NgPC decreases within the post bifurcation region.

Fig. 9a indicates that the method is more costly when P = 2 compared
to computations based on P ≥ 3. This is expected, based on the way the
adaptive criteria operates, as using P = 2 means that mainly linear terms
contribution will be retained in the reconstruction of a (possibly) non-linear
response. Consequently, the use of P = 3 immediately reduces this drawback
as shown in Fig. 9b. Note that the increase in P does not reduce significantly
the number of samples NgPC as far as irregular response surfaces are concerned
(i.e in the stochastic bifurcation region). However, for smooth response (i.e.
U∗ > 6.6), the use of higher order gPC expansion consistently reduces the
computational cost ( 9c and 9d). Keeping in mind that the number of cubature
points per element is taken to be equal to (P + 1)d, ME-gPC computations
based on P = 3 (or P = 4) represent a good compromise between accuracy and
associated computational cost.

The convergence properties of the ME-gPC formulation are now analysed
by means of the convergence rates based on the variance of αA. Fig. 10 shows
results for uniformly refined meshes while Fig. 11 shows results for the ME-gPC
with the adaptive refinement approach described in this paper.

Spectral P−convergence and algebraic h−convergence, with a convergence
rate of O(N−Nq ) where Nq is the number of Gauss quadrature points per direc-
tion, is obtained for the smooth response (with no discontinuity) corresponding
to the post-bifurcation region (e.g. U∗ = 7). Those results are in very good
agreement with the theoretical rate estimates of Foo et al.[6] (represented here
with short dashed lines). For the bifurcation state (e.g. U∗ = 6.34), the con-
vergence is poor and irregular on the uniform meshes with convergence rates
stagnating around O(N−1). However, the approximation error is much lower
for the adaptive approach and drops faster and sooner for larger mesh size and
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Table 3: Computational
speedups of the adaptive
ME-gPC approach – in
terms of total number
of elements and cubature
points – due to the choice
of the polynomial order
of representation P for a
given level of relative er-
ror in variance ε.

U∗ N (P=2)/N (P=5) N
(P=2)
gPC /N

(P=5)
gPC ε

7.0 ≈ 83 ≈ 21 ≈ 2 · 10−9

6.34 ≈ 20 ≈ 4 ≈ 9.5 · 10−4

Figure 10: Case-2:
h/p convergence rates
of the non-adaptive
ME-gPC variance of αA
for U∗ = 7.0 (left) and
U∗ = 6.34 (right). 100 101 102 10310−12
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larger P (see Fig. 11-b). This results prove the superiority of the adaptive
versus uniform refinement. Moreover, increasing the order of the polynomial
allows some computational savings in terms of the total number of elements
and the total number of runs (including intermediate stages). Table 3 shows
that the adaptive computation is about 20 times faster for a choice of P = 5
than P = 2 for the smooth case U∗ = 7 while it remains approximately 4 times
faster for the bifurcation case U∗ = 6.34 (cf. Fig. 11). Savings in terms of the
total number of elements are even more substantial.

As a brief demonstration of the robustness of the method in capturing more
complex response, we also present results obtained from combining randomness
in the linear spring coefficient (k̄α1 = 1, σkα1

= 0.05) and mass ratio (µ̄ = 100,
σµ=5). Me-gPC computations were performed using P = 4 and the threshold
values used for the adaptive criteria are θ1 = 5 × 10−5 and θ2 = 0.75. As
clearly visible in Fig. 12, the bifurcating front is not aligned with one of the
parametric directions in this case. Instead, LCO are obtained at different kα1 for
varying mass ratio µ. We observe that the grid refinement adapts remarkably to
the front although requiring more elements than the previous cases. The final
number of elements after refinement is N = 231, which, in conjunction with of
use of P = 4, corresponds to NgPC = 10525 deterministic samples.

Figure 11: Case-2: h/p
convergence rates of the
adaptive ME-gPC vari-
ance of αA for U∗ =
7.0 (left) and U∗ = 6.34
(right). 100 101 102 103
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Figure 12: ME-gPC re-
sponse surface due to un-
certain kα1 and µ ob-
tained for U∗ = 6.2 using
P = 4 (k̄α1 = 1, σkα1

=

0.05, µ̄ = 100, σµ = 5)
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Figure 13: Case-3: ME-
gPC pdf isocontours of αA
due to uncertain kα3 with
k̄α3 = 0 and σkα3

= 3.75.
The right plot shows a
zoomed-in view of the pdf
region of low reduced ve-
locity (kα1 = 1, kα5 = 20,
the colormap is adjusted).

4..3 Case-3: Influence of wide span uncertainty in the cubic torsional stiffness
term

We now consider the sensitivity of the LCO peak to some randomness in kα3 ,
while the deterministic value of the pentic pitch stiffness term is taken to be
kα5 = 20 [24]. The novelty of the approach is that we now consider a wide
span range of uncertainty for kα3 that encompasses both negative (softening)
and positive (hardening) spring values. The distribution is again chosen to be
uniform and we pick the following range kα3 ∈ [−3.75, 3.75]. Notice that the
non-zero probability associated with negative and positive values of kα3 is likely
to introduce several routes to instability (existence of supercritical vs. sub-
critical bifurcations) depending on the initial condition. It is therefore a more
strenuous test for the numerical method.
We use an adaptive ME-gPC representation coupled with a deterministic Runge-
Kutta time-integration ODE solver. A 3rd order Legendre Polynomial Chaos ba-
sis is used within each element and the refinement criteria is taken as θ1 = 10−4.
We chose an initial pitch angle α(0) = 12.5 deg, while all other initial conditions
(ξ(0), α′(0) ,ξ′(0)) are set to zero. Cost is not an issue here and computations
converge very quickly as there is only one uncertain parameter. Fig. 13 (left)
shows the normalized pdf isocontours over the range : U∗ ∈ [6.08, 7] while the
right plot shows a zoomed-in view of the pdf region defined by U∗ ∈ [6.08, 6.24].
For U∗ > 6.3, the pdf isocontours with non-zero values present a fan shape
that gets wider with increasing U∗. This coincides with the capture of both the
supercritical and subcritical branches that coalesce in one single region. Most
probable solutions are always obtained for large positive values of kα3 and corre-
spond to small LCO oscillations. Least probable solutions are always obtained
for large negative values of kα3 and correspond to large LCO oscillations.
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Figure 14: Case-4: (a)
pdf of the stable large am-
plitude LCO branch for
selected U∗ and (b) cor-
responding ME-gPC re-
sponse surface and grid
vs. α(0) and kα3 for U∗ =
6 10 15 20 25 30 35
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For U∗ < 6.3 we observe a dominant Dirac delta function-like distribution for
stable motion (i.e. αA = 0). This state corresponds to all kα3 > 0 realiza-
tions. For the kα3 < 0 range, and depending on the initial pitch value (here
α(0) = 12.5), there is a non-zero probability to get unstable motions captur-
ing the LCO subcritical branch. Due to the low probability of occurrence, this
region is masked on the left plot but appears clearly in the zoomed-in version
(right plot). In this region, we notice that the most probable solutions are al-
ways obtained for large negative values of kα3 and correspond to large LCO
oscillations.
Therefore, we can conclude that there exists a particular range of reduced veloc-
ity, in which some rare events of large instabilities can take place for softening
springs. This result emphasizes the importance of uncertainty quantification.
Of course in this case, the choice of the initial condition remains of major im-
portance.

4..4 Case-4: subcritical stochastic bifurcation with random initial pitch angle
and cubic spring term

Finally, the sensitivity of the peak LCO to combined randomness in kα3 and
α(0) with uniform distribution is explored using ME-gPC coupled with the de-
terministic Runge-Kutta time-integration ODE solver. Other initial conditions
(ξ(0), α′(0) ,ξ′(0)) are set to zero.

The mean and the standard deviation of the input random parameters were
taken as: ᾱ(0) = 12.5 deg, σα(0) = 12.5 deg, k̄α3 = −3 and σkα3

= 0.75. The
bifurcation parameters were chosen as U∗ ∈ [5.7, 6.4].

Fig. 14a presents the αA pdf of the stable large amplitude LCO branch
computed using the adaptive ME-gPC solver. Each pdf is estimated from the
ME-gPC expansions using 1M samples. We notice that the amplitude proba-
bility density functions depend strongly on the reduced velocity and that the
response is more sensitive to the kα3 parametric uncertainty. For reduced veloc-
ities above the bifurcation point (U∗ ≥ 6.4), the response results in unimodal
density functions with distribution close to uniform. However, for reduced ve-
locities in the range U∗ ∈ [5.8, 6.3], the density response is bimodal with an
additional sharp Dirac delta-like peak (not represented here) corresponding to
the zero-amplitude stable branch. This bimodal response results from the dis-
continuous shape of the response surface solution. For instance, one can see on
Fig. 14b, the response surface computed for U∗ = 6 which exhibits a discon-
tinuous pattern where the boundary values of α(0) and kα3 defining the jump
from the stable branch to stable LCO is clearly visible.
Aside from this study with uniformly distributed inputs, one could wonder about
the requirements and effects of changing the probability distributions of the ran-
dom inputs. Another advantage of the gPC representation, as long as the surface
fit is sufficiently accurate, is to be able to estimate the statistics of the response
for different random input distributions, so long as the new input spans the
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Figure 15: Case-4(∗):
pdf of the stable large
amplitude LCO branch
for selected U∗ for α(0)
and kα3 following (a)
Beta(α = 3, β = 3)
distributions and (b) uni-
form Beta(α = 6, β = 6)
distributions respectively

same domain of the probability space as the former. In this case, there is no
need to recompute the response at new sample points and the new response
statistics can be simply evaluated in a post-processing stage (directly from Eq.
8). In the following, we show results for Case-4 in which we change the type
of parametric distributions while keeping the same parametric bounds for kα3

and α(0) as in Case-4 (we refer to those cases as Case-4(∗), see Fig. 15). We
consider a case where both kα3 and α(0) follow independent Beta(α = 3, β = 3)
distributions (Fig. 15a) and another case where α(0) follows a uniform distri-
bution and kα3 a Beta(α = 6, β = 6) distribution (Fig. 15b). The obtained
pdf shapes are very different from Case-4 but follow the same trend of getting
narrower for higher U∗ due to the change in the surface response plateau. Here,
the distributions look similar to Beta distributions. However, careful examina-
tions of the distribution tails indicate that there exists a bias for lower reduced
velocities resulting in a longer left tail toward the zero-amplitude stable branch
(Fig. 15a). This bias is reduced when α(0) follows a uniform distribution and
the kα3 Beta distribution is more narrow (Fig. 15b).

5. Conclusions

In this work, a non-intrusive h−adaptive stochastic solver, based on a Multi-
Element generalized Polynomial Chaos expansions, along the lines of Foo et
al.[6], was successfully employed to predict the LCO bifurcation diagram of an
elastically mounted two-degree-of-freedom airfoil subject to random physical
parameters and initial conditions. The random structural parameters were cho-
sen to follow independent bounded distributed random variables and Legendre
polynomials were used as the polynomial basis of representation within each
sub-element. Full tensor product-based Gauss Legendre quadrature point sets
were used in each element to evaluate the Galerkin projection of the approxi-
mated solution. Criteria of adaptivity for the parametric grid refinement was
based on the local convergence of the solution variance.

The difficulty of this problem is due to the fact that LCO bifurcations for
given reduced velocities translate in stochastic bifurcations or discontinuities
of the solution against the parametric variability of the inputs. The adaptive
methodology was able to track these fronts and provide accurate and converged
solutions for both uniform and Beta random distributions. Results were val-
idated against Monte-Carlo simulations. The robustness of the ME-gPC was
demonstrated for several variety of stochastic configurations due to randomness
in the torsional stiffness terms, mass ratio and initial pitch angle for a wide
range of operating conditions.

In the case of the combined randomness in the linear and cubic spring co-
efficient, the solution bifurcation region was notably enlarged due to the ran-
domness of the parameters. Probability density functions of the pitch angle
have shown sudden change and variability from zero-amplitude stable branch to
large LCO stable branch for a given reduced velocity. In the case of subcritical
stochastic bifurcation with combined randomness in the initial pitch angle and
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cubic spring coefficient with deterministic pentic spring coefficient, pitch angle
probability density functions have shown the presence of a bimodal response
with a strong variability of the probability of occurrence for the LCO stable
branch.
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